Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

TFKit lets everyone make use of transformer architecture on many tasks and models in small change of config.
At the same time, it can do multi-task multi-model learning, and can introduce its own data sets and tasks through simple modifications.

Feature

  • One-click replacement of different pre-trained models
  • Support multi-model and multi-task
  • Classifier with multiple labels and multiple classifications
  • Unify input formats for different tasks
  • Separation of data reading and model architecture
  • Support various loss function and indicators

Supplement

  • Model list: Support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert/...
  • NLPrep: download and preprocessing data in one line
  • nlp2go: create demo api as quickly as possible.

Documentation

Learn more from the docs.

Quick Start

Installing via pip

pip install tfkit

Running TFKit to train a ner model

install nlprep and nlp2go

pip install nlprep  nlp2go -U

download dataset using nlprep

nlprep --dataset tag_clner  --outdir ./clner_row --util s2t

train model with albert

tfkit-train --batch 20 \
--epoch 5 \
--lr 5e-5 \
--train ./clner_row/clner-train.csv \
--test ./clner_row/clner-test.csv \
--maxlen 512 \
--model tagRow \
--savedir ./albert_ner \
--config voidful/albert_chinese_small

eval model

tfkit-eval --model ./albert_ner/3.pt --valid ./clner_row/validation.csv --metric clas

result

Task : default report 
TASK:  default 0
                precision    recall  f1-score   support

    B_Abstract       0.00      0.00      0.00         1
    B_Location       1.00      1.00      1.00         1
      B_Metric       1.00      1.00      1.00         1
B_Organization       0.00      0.00      0.00         1
      B_Person       1.00      1.00      1.00         1
    B_Physical       0.00      0.00      0.00         1
       B_Thing       1.00      1.00      1.00         1
        B_Time       1.00      1.00      1.00         1
    I_Abstract       1.00      1.00      1.00         1
    I_Location       1.00      1.00      1.00         1
      I_Metric       1.00      1.00      1.00         1
I_Organization       0.00      0.00      0.00         1
      I_Person       1.00      1.00      1.00         1
    I_Physical       0.00      0.00      0.00         1
       I_Thing       1.00      1.00      1.00         1
        I_Time       1.00      1.00      1.00         1
             O       1.00      1.00      1.00         1

     micro avg       1.00      0.71      0.83        17
     macro avg       0.71      0.71      0.71        17
  weighted avg       0.71      0.71      0.71        17
   samples avg       1.00      0.71      0.83        17

host prediction service

nlp2go --model ./albert_ner/3.pt --api_path ner

You can also try tfkit in Google Colab: Google Colab

Overview

Train

$ tfkit-train
Run training

arguments:
  --train TRAIN [TRAIN ...]     train dataset path
  --test TEST [TEST ...]        test dataset path
  --config CONFIG               distilbert-base-multilingual-cased/bert-base-multilingual-cased/voidful/albert_chinese_small
  --model {once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} [{once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} ...]
                                model task
  --savedir SAVEDIR     model saving dir, default /checkpoints
optional arguments:
  -h, --help            show this help message and exit
  --batch BATCH         batch size, default 20
  --lr LR [LR ...]      learning rate, default 5e-5
  --epoch EPOCH         epoch, default 10
  --maxlen MAXLEN       max tokenized sequence length, default 368
  --lossdrop            loss dropping for text generation
  --tag TAG [TAG ...]   tag to identity task in multi-task
  --seed SEED           random seed, default 609
  --worker WORKER       number of worker on pre-processing, default 8
  --grad_accum          gradient accumulation, default 1
  --tensorboard         Turn on tensorboard graphing
  --resume RESUME       resume training
  --cache               cache training data

Eval

$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model MODEL             model path
  --metric {emf1,nlg,clas}  evaluate metric
  --valid VALID             evaluate data path

optional arguments:
  -h, --help            show this help message and exit
  --print               print each pair of evaluate data
  --enable_arg_panel    enable panel to input argument

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

This version

0.6.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.6.6.tar.gz (225.7 kB view details)

Uploaded Source

Built Distributions

tfkit-0.6.6-py3.7.egg (168.2 kB view details)

Uploaded Source

tfkit-0.6.6-py3-none-any.whl (75.9 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.6.6.tar.gz.

File metadata

  • Download URL: tfkit-0.6.6.tar.gz
  • Upload date:
  • Size: 225.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.6.6.tar.gz
Algorithm Hash digest
SHA256 0f9b2b8177b5a12462fa5f9076494b1502d06235c5a8fcfeeadbb52eb266735a
MD5 9c98988f5d1289adde82e6459b1a5999
BLAKE2b-256 3f1150ddede5de0cd99e6ac43daea524e557758881a4c070f0e2bbf72e844af1

See more details on using hashes here.

File details

Details for the file tfkit-0.6.6-py3.7.egg.

File metadata

  • Download URL: tfkit-0.6.6-py3.7.egg
  • Upload date:
  • Size: 168.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.6.6-py3.7.egg
Algorithm Hash digest
SHA256 1dbb2f0bf00702483a94abb898abad7e1af237170f054d24c1e1dfabbd53e69e
MD5 603db4949f03eac84c97df6d4e45a73a
BLAKE2b-256 ff24148cb639fdee974575bdf3cd141c773ac6a2ac8d77cfd0f9a8949953eea4

See more details on using hashes here.

File details

Details for the file tfkit-0.6.6-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.6.6-py3-none-any.whl
  • Upload date:
  • Size: 75.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.6.6-py3-none-any.whl
Algorithm Hash digest
SHA256 776b92e88ff4771fc30e20f3fb3279e0beb45b12825048257c670e1b6106fe21
MD5 357a5fd7c968f29ab0c9ce0ea319f1da
BLAKE2b-256 8148e7ff52fc37df1cca22a455d7d698e37be9237c1a5559e6db807bffd6945a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page