Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.19.tar.gz (215.3 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.19-py3.7.egg (175.5 kB view details)

Uploaded Source

tfkit-0.7.19-py3-none-any.whl (78.4 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.19.tar.gz.

File metadata

  • Download URL: tfkit-0.7.19.tar.gz
  • Upload date:
  • Size: 215.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.19.tar.gz
Algorithm Hash digest
SHA256 a72fe7542fdb0cd0fabef4cfd63d875a4bdc79b41f113f3cef37237149d45e3c
MD5 4cd69039ee16202bfbcc6ce71ab33a2a
BLAKE2b-256 e7c2db265e43203df755d240906ed1783937d49e527a3fbce4a8e8af6b3f4940

See more details on using hashes here.

File details

Details for the file tfkit-0.7.19-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.19-py3.7.egg
  • Upload date:
  • Size: 175.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.19-py3.7.egg
Algorithm Hash digest
SHA256 84026047889479a80e9751158ed32aed0c6a96291786ad79db02dbebfe1349a2
MD5 0d7a281b31d7c3416990db069a47297b
BLAKE2b-256 6c1bf09c012c236f9ee4de07a2c4685e95519eca460dea3e59198bdc95764bf3

See more details on using hashes here.

File details

Details for the file tfkit-0.7.19-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.19-py3-none-any.whl
  • Upload date:
  • Size: 78.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.19-py3-none-any.whl
Algorithm Hash digest
SHA256 9809ebe6dfa53eba74fd253dec5e9e1bc65eb7fc364474a3a6824599bddb25d7
MD5 14b62b1bc72fa78bd5eedb863b26fae3
BLAKE2b-256 778b9f279604926173573fa96a9ac7769184c3d3ea4dd86f8a181945dc9bc7dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page