Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.20.tar.gz (215.4 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.20-py3.7.egg (175.8 kB view details)

Uploaded Source

tfkit-0.7.20-py3-none-any.whl (78.5 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.20.tar.gz.

File metadata

  • Download URL: tfkit-0.7.20.tar.gz
  • Upload date:
  • Size: 215.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.20.tar.gz
Algorithm Hash digest
SHA256 041e24bbe83d4c2adc56d46547a4b2897e6fc9a6158d41510450967f822e4200
MD5 0f3d4392bb331d01d0026a4b0e2049a6
BLAKE2b-256 81cecbadc55d9d17449f6d5a33635db3a22fcdb2d6759ea5b86b69ce618b0e7c

See more details on using hashes here.

File details

Details for the file tfkit-0.7.20-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.20-py3.7.egg
  • Upload date:
  • Size: 175.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.20-py3.7.egg
Algorithm Hash digest
SHA256 37f8b420a75a13d6b19e8e21889202d3a488bf91c4949245351b36ff94b426b8
MD5 2d1bf76ca3346f389b058d0226c9f89c
BLAKE2b-256 fc6b02bdfb615d2bc9e66f45b03913762a00cc7557725480ecc64b4f4fbf8a2b

See more details on using hashes here.

File details

Details for the file tfkit-0.7.20-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.20-py3-none-any.whl
  • Upload date:
  • Size: 78.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.20-py3-none-any.whl
Algorithm Hash digest
SHA256 29616b57a6977cd9c646885c50c8bda28f2bc87c95a24c04e6bcaca24ddda858
MD5 59c13e6e6643688c53359f8f9729729f
BLAKE2b-256 5c6840daca79ed9970a7b16b609b57f20e7ec4f253f150a74afb0a99d39b3b02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page