Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.21.tar.gz (215.7 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.21-py3.7.egg (176.4 kB view details)

Uploaded Source

tfkit-0.7.21-py3-none-any.whl (78.8 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.21.tar.gz.

File metadata

  • Download URL: tfkit-0.7.21.tar.gz
  • Upload date:
  • Size: 215.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.21.tar.gz
Algorithm Hash digest
SHA256 fc8236e91dd079a96cb27b1261cbc3f73589e2f04f52525009923a99ceda897d
MD5 cb15416efe82839c8b8d643812a1edd1
BLAKE2b-256 49f0a4803953821b274b3c5f5f063eb2448143eb55302445948274ca2915975f

See more details on using hashes here.

File details

Details for the file tfkit-0.7.21-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.21-py3.7.egg
  • Upload date:
  • Size: 176.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.21-py3.7.egg
Algorithm Hash digest
SHA256 a8a4ed50b2d726554a57796fa02df5c7ca6c897a39efe9b20867c5f40b140b08
MD5 d2a081e0873f2488f5908390199d1963
BLAKE2b-256 3f9af1c13b753ed5ce0ba87d42113d83fa3e5b17253ff2eedd4cd6cd594c910c

See more details on using hashes here.

File details

Details for the file tfkit-0.7.21-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.21-py3-none-any.whl
  • Upload date:
  • Size: 78.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.21-py3-none-any.whl
Algorithm Hash digest
SHA256 daaaa4af0b9178271b1be56192fbc79f2e9320f3d6a5f77ae929738b080a392e
MD5 5c3dba05db6ffe8deb2c1c20dfa4c015
BLAKE2b-256 45262cd26bc12a30dbdf21f50de459120302d63e2ada2c2c9e0624ac58bb0b0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page