Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.24.tar.gz (216.2 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.24-py3.7.egg (177.9 kB view details)

Uploaded Source

tfkit-0.7.24-py3-none-any.whl (79.3 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.24.tar.gz.

File metadata

  • Download URL: tfkit-0.7.24.tar.gz
  • Upload date:
  • Size: 216.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.24.tar.gz
Algorithm Hash digest
SHA256 a81081074e9767e182cf7a15fb938c900961c64c3030ebce34a7c98189ca1adb
MD5 7dd16aca9a17820f946f42ec2a8907d8
BLAKE2b-256 86339556c698ebbaab5b9ebd2bfff522e486b42531cdc4063c2a46851613754b

See more details on using hashes here.

File details

Details for the file tfkit-0.7.24-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.24-py3.7.egg
  • Upload date:
  • Size: 177.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.24-py3.7.egg
Algorithm Hash digest
SHA256 b3dd17bfd5470574d72f739efd261c338c78d376726dd0a211d3f61509e52af1
MD5 80f82991a9fa683f67f1d26549364be2
BLAKE2b-256 967c0aa08697de82e29aea56c63bd98003bf6b2de907f81a950bc5978b793901

See more details on using hashes here.

File details

Details for the file tfkit-0.7.24-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.24-py3-none-any.whl
  • Upload date:
  • Size: 79.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.24-py3-none-any.whl
Algorithm Hash digest
SHA256 85022a3d9413f55ab605b73227cce4e43aa49b5206a94f022a982ba712bdc2d3
MD5 392b7526b241089651bc5cff7991bddf
BLAKE2b-256 f8b57162687c2ad0e01354daae95b59a4bbe309b4d5fc8356ba36a2a15cff50d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page