Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.25.tar.gz (216.6 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.25-py3.7.egg (179.0 kB view details)

Uploaded Source

tfkit-0.7.25-py3-none-any.whl (79.7 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.25.tar.gz.

File metadata

  • Download URL: tfkit-0.7.25.tar.gz
  • Upload date:
  • Size: 216.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.25.tar.gz
Algorithm Hash digest
SHA256 a4191b3a3f4c9741887ae19c19534598bdeb6baefeca12f4700c406f457fee58
MD5 dd3176ed7067a5166c0e486a9300aeba
BLAKE2b-256 638eaa7557ac912101aed8bf739d80124a49897366f9f100ba238ffd1d1e6b50

See more details on using hashes here.

File details

Details for the file tfkit-0.7.25-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.25-py3.7.egg
  • Upload date:
  • Size: 179.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.25-py3.7.egg
Algorithm Hash digest
SHA256 1e09151fa5e8a2df45e6583c5cbbb32ea857bec214bed33ad365b9fd3bc97d3f
MD5 ae1e659431d9bfdb240f4773c4851a47
BLAKE2b-256 a758bf3d5a88dfb53bdd33432c55124c0d2882bf459635fed161200481e39ba5

See more details on using hashes here.

File details

Details for the file tfkit-0.7.25-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.25-py3-none-any.whl
  • Upload date:
  • Size: 79.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.25-py3-none-any.whl
Algorithm Hash digest
SHA256 02c23dc300ae750f3c368774dc708f2f61bf76a3dd26c284a5d905ccf039bcd1
MD5 b0d0a93e31f16ae98ae24872b1eb5f63
BLAKE2b-256 3a68401ce80fd5e7414d492237ef4ee699c48917a145332958bc91ea361d6145

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page