Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.26.tar.gz (216.9 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.26-py3.7.egg (179.7 kB view details)

Uploaded Source

tfkit-0.7.26-py3-none-any.whl (80.0 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.26.tar.gz.

File metadata

  • Download URL: tfkit-0.7.26.tar.gz
  • Upload date:
  • Size: 216.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.26.tar.gz
Algorithm Hash digest
SHA256 b0a905036616b7d59710482bda0354e28918f027d52847c1119664c3e5def8c2
MD5 e761066374f668178d6705d8d22c385e
BLAKE2b-256 8b99eabf9c9765e3627c85060c3c60d43b63b40ddbe04143926ea83958f8b2e3

See more details on using hashes here.

File details

Details for the file tfkit-0.7.26-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.26-py3.7.egg
  • Upload date:
  • Size: 179.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.26-py3.7.egg
Algorithm Hash digest
SHA256 845c0c68a8d559068043db0b449dc16502b49e4f735a4593437a5119402077e6
MD5 f71590e0b70e1710494ed5d825882a18
BLAKE2b-256 6925fd13ff77b623c780230df1732ea990c329cda9a0b1728feb18a411ec9aba

See more details on using hashes here.

File details

Details for the file tfkit-0.7.26-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.26-py3-none-any.whl
  • Upload date:
  • Size: 80.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.26-py3-none-any.whl
Algorithm Hash digest
SHA256 235998e1c938ad790360a614fdf81eeefed179980788787e739939449ac93925
MD5 53089e5a4e5ea1a3794588fd91c8c9cf
BLAKE2b-256 ea8fb689e52a2599137810f0f72d43d9369708f4ba3171875ab598babf334c0e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page