Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.28.tar.gz (217.1 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.28-py3.7.egg (180.0 kB view details)

Uploaded Source

tfkit-0.7.28-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.28.tar.gz.

File metadata

  • Download URL: tfkit-0.7.28.tar.gz
  • Upload date:
  • Size: 217.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.28.tar.gz
Algorithm Hash digest
SHA256 21f4b7eaef4676ae96e70464eb8f07dede8bbbffb16534e88b2e32aaf701e5ed
MD5 75e4abdfcd9de79bc75b32072e88e4b5
BLAKE2b-256 a08ef3b2dc6689388a9671c0a08a8b48170bccb4702bd93da89e7dcc990ffa70

See more details on using hashes here.

File details

Details for the file tfkit-0.7.28-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.28-py3.7.egg
  • Upload date:
  • Size: 180.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.28-py3.7.egg
Algorithm Hash digest
SHA256 a4a68a2684785537a6947e87a9153a4c2029f39cca77422b0ad00921b81fcc3c
MD5 8c348af28fd73b86ba6bb8952c3840a2
BLAKE2b-256 da609f618e147e4986498580e89fd2b65fc6dbc9a1ef8d1c23aa18ebefb17581

See more details on using hashes here.

File details

Details for the file tfkit-0.7.28-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.28-py3-none-any.whl
  • Upload date:
  • Size: 80.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.28-py3-none-any.whl
Algorithm Hash digest
SHA256 d8e47d5dcf460530046a4f42b9cddbaec33dcaf0aebf284213ca52e072912570
MD5 029f4c2e66753d411a37beed9da7be22
BLAKE2b-256 d2c95f99237994fcd7af568d0e7d31426cad2aa1ad6c8d46278060033dabaa96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page