Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.29.tar.gz (217.2 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.29-py3.7.egg (180.2 kB view details)

Uploaded Source

tfkit-0.7.29-py3-none-any.whl (80.2 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.29.tar.gz.

File metadata

  • Download URL: tfkit-0.7.29.tar.gz
  • Upload date:
  • Size: 217.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.29.tar.gz
Algorithm Hash digest
SHA256 597e057946d65400da0af273b47e13de9312a3ab0791dd93ae528f111c6baea6
MD5 5478de894476c9869951de1361214396
BLAKE2b-256 9fb5a4920f25438364ec162c278bf98830f8456768519820112463c0be0a51bf

See more details on using hashes here.

File details

Details for the file tfkit-0.7.29-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.29-py3.7.egg
  • Upload date:
  • Size: 180.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.29-py3.7.egg
Algorithm Hash digest
SHA256 c7074cd1bf56db0ba7aec636eda4b84a25d684e3c4c960de95db391d82cddc1c
MD5 3afcc911ee5f32822d6b3f4868b9ad03
BLAKE2b-256 8d952b253b486237a6cf57130fca7b49fa887149c223d34cc1ff2313fa78d8ef

See more details on using hashes here.

File details

Details for the file tfkit-0.7.29-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.29-py3-none-any.whl
  • Upload date:
  • Size: 80.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.29-py3-none-any.whl
Algorithm Hash digest
SHA256 02d179cef1a7b4d078eacc7527c6ef4a1080ebc827391275ec2444df9c5d7964
MD5 44b27d0075f0398cba12e3d912ec005a
BLAKE2b-256 bfd0f584eb5c714e6029d776d4ce9e84890428144771a6ec99440135cb5daaee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page