Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.30.tar.gz (217.2 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.30-py3.7.egg (180.3 kB view details)

Uploaded Source

tfkit-0.7.30-py3-none-any.whl (80.2 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.30.tar.gz.

File metadata

  • Download URL: tfkit-0.7.30.tar.gz
  • Upload date:
  • Size: 217.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.30.tar.gz
Algorithm Hash digest
SHA256 70c902f69a2ddd7c679d4e7b26e23e06c55a783c6bca46b9903583d60db1a7fc
MD5 118a1cc0d8c9602d323165322e457528
BLAKE2b-256 8706c8117b0069449e09c22ba08127b45832bf800c4a6571d8c8eaaebd65aacc

See more details on using hashes here.

File details

Details for the file tfkit-0.7.30-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.30-py3.7.egg
  • Upload date:
  • Size: 180.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.30-py3.7.egg
Algorithm Hash digest
SHA256 28398539983992aae99f217a6f75fac5c33ee01f0aab2383c3f786953d4e4812
MD5 b68da0f6e7f9200272ccb6264ea04be6
BLAKE2b-256 25cc2ee34f06a2ad5cdeecd734c5e362acfdf0bf47469cb761656d7ab40df4c6

See more details on using hashes here.

File details

Details for the file tfkit-0.7.30-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.30-py3-none-any.whl
  • Upload date:
  • Size: 80.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.30-py3-none-any.whl
Algorithm Hash digest
SHA256 27d0a52e46d4b5d7c4f1b1e4cf283e291bd48fbc66b672369a83fec1d1b7fb7e
MD5 b6a69b40baa4809634b1f9d0a6ddc4f1
BLAKE2b-256 742453624e0e711f9f90ab01fd1d7cc3be63f213ad0171aeb12928c3fb3b9d78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page