Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.32.tar.gz (217.5 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.32-py3.7.egg (180.4 kB view details)

Uploaded Source

tfkit-0.7.32-py3-none-any.whl (80.3 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.32.tar.gz.

File metadata

  • Download URL: tfkit-0.7.32.tar.gz
  • Upload date:
  • Size: 217.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.32.tar.gz
Algorithm Hash digest
SHA256 d9ae3d494a30bff587f8d9d43267da63e51ad5bf404c8764dcca99f779109c7b
MD5 9280485c917c6791078b07712738e66d
BLAKE2b-256 7b475cff5c540cc6c8bb02fdd70c6321959cb14e966bfc6b9d870efed7992be5

See more details on using hashes here.

File details

Details for the file tfkit-0.7.32-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.32-py3.7.egg
  • Upload date:
  • Size: 180.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.32-py3.7.egg
Algorithm Hash digest
SHA256 8fdc08c93bd91cd1fd18e7948e463668cf0df661145f468589996879a96127ff
MD5 cd8f84d8471c4f2459cca6beed9763e5
BLAKE2b-256 6eb2e692a659f3aa1e54ca7a9f742d1cb811851190558ec3d84279ad9488976a

See more details on using hashes here.

File details

Details for the file tfkit-0.7.32-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.32-py3-none-any.whl
  • Upload date:
  • Size: 80.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.32-py3-none-any.whl
Algorithm Hash digest
SHA256 39ece3748412126a8219ca597453d5983058a7cb27fcc85b4fcc8d57a5ebbf2b
MD5 f947c1aed0c94fb534465b15feb28fd0
BLAKE2b-256 e3197d24d831b315584cac6690e53bf6cc81741ceb5f88dc89905ffa24072303

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page