Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.33.tar.gz (217.5 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.33-py3.7.egg (180.4 kB view details)

Uploaded Source

tfkit-0.7.33-py3-none-any.whl (80.3 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.33.tar.gz.

File metadata

  • Download URL: tfkit-0.7.33.tar.gz
  • Upload date:
  • Size: 217.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.33.tar.gz
Algorithm Hash digest
SHA256 3eaac00d539a38f27c1d6ee7844d29d97ef0779f5f0d3c4e63cb2ece81cd855d
MD5 026560cf25078b5e50b3e32f32ccb7ea
BLAKE2b-256 22301ca31af2e8b1928b61373f63f2c91a786f95e1db3c931104b414af0d0295

See more details on using hashes here.

File details

Details for the file tfkit-0.7.33-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.33-py3.7.egg
  • Upload date:
  • Size: 180.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.33-py3.7.egg
Algorithm Hash digest
SHA256 c145f5b017d87e0049150cbe7f61cf218ec3da1cd72e31252908e5c07ef50072
MD5 7824856c6dfa1b9427b2a1188c58d832
BLAKE2b-256 ba7b3a76a794d1e95496ac4c1bdd8004bbde4924092de61e7ea41a7a42d023fe

See more details on using hashes here.

File details

Details for the file tfkit-0.7.33-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.33-py3-none-any.whl
  • Upload date:
  • Size: 80.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.33-py3-none-any.whl
Algorithm Hash digest
SHA256 af3061aed2a7435109acce677655f7f4b9ef7654bffec04a925ec069365c0240
MD5 aaad4959673da533beefc0dad5bdac4d
BLAKE2b-256 aa946a1b527ec31027dc815fe1c63ec87c1bea872d8f61f096a68f0e178fd6e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page