Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.34.tar.gz (217.6 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.34-py3.7.egg (180.5 kB view details)

Uploaded Source

tfkit-0.7.34-py3-none-any.whl (80.3 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.34.tar.gz.

File metadata

  • Download URL: tfkit-0.7.34.tar.gz
  • Upload date:
  • Size: 217.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.34.tar.gz
Algorithm Hash digest
SHA256 abb045709b05e40432f718dd9780df6e966458f823daf729b02e6690025fbf8f
MD5 770e02a6f932f4bcaf98771641aadc70
BLAKE2b-256 9b081b9040e4d80caa23f522b07abb51941f1b4a0771355e50f6b9e41f9c69ac

See more details on using hashes here.

File details

Details for the file tfkit-0.7.34-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.34-py3.7.egg
  • Upload date:
  • Size: 180.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.34-py3.7.egg
Algorithm Hash digest
SHA256 002d6919cf380350a7f2bdb728c753fd3770131fc2af1f17b6991dbc3b2d39f8
MD5 792d3ad0567bf434d6f1af56af5a1559
BLAKE2b-256 a737e7f21e33acf8946945b5831a2832a32b1db9be6b92b73ed2cf8d8080b7b4

See more details on using hashes here.

File details

Details for the file tfkit-0.7.34-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.34-py3-none-any.whl
  • Upload date:
  • Size: 80.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.34-py3-none-any.whl
Algorithm Hash digest
SHA256 396532c874f7b91974703303f100847817fa9e9096b8fc9bea1bc3acef631f0b
MD5 9fba0429f9c18483f7ebc337dfcc4ba3
BLAKE2b-256 a6c1629d96238dce3cbe3bb358e68e5848ad8c4b38315b83a5da76a4a00ef327

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page