Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.35.tar.gz (217.7 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.35-py3.7.egg (185.2 kB view details)

Uploaded Source

tfkit-0.7.35-py3-none-any.whl (80.4 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.35.tar.gz.

File metadata

  • Download URL: tfkit-0.7.35.tar.gz
  • Upload date:
  • Size: 217.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.35.tar.gz
Algorithm Hash digest
SHA256 19a3c9699237397a2d11ed73fe03a3ad7ed917eed19aa81496f627f42cb0672d
MD5 741b82ec2e19bd0c9e625cfbd0d31ebd
BLAKE2b-256 4a1878e12cf7569d32d2db1dd71154fe475975342b0517165f0c524e82abd6db

See more details on using hashes here.

File details

Details for the file tfkit-0.7.35-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.35-py3.7.egg
  • Upload date:
  • Size: 185.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.35-py3.7.egg
Algorithm Hash digest
SHA256 d9838b90c1759239ac83d45369a25c9e8652d76859f471cc14628f5481690c68
MD5 c6c5d55eff6833650153737470843bc2
BLAKE2b-256 0e5c167f352102c0e6b00b2be5d44b0d2d8f0816bfcd2f4b7b6384120d1c6007

See more details on using hashes here.

File details

Details for the file tfkit-0.7.35-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.35-py3-none-any.whl
  • Upload date:
  • Size: 80.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.35-py3-none-any.whl
Algorithm Hash digest
SHA256 cff6ba6df0ff60fe9c3bfdf64462ab822cb959ef7482db88f00cd9e7589cd9b9
MD5 b7e4ee3939b7499f91253089222f8f01
BLAKE2b-256 337df41d99cf2a5f128a3af5dd61589bc8210cf44b2fa00c96317bcc7b52c0a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page