Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.37.tar.gz (217.3 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.37-py3.7.egg (185.0 kB view details)

Uploaded Source

tfkit-0.7.37-py3-none-any.whl (80.4 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.37.tar.gz.

File metadata

  • Download URL: tfkit-0.7.37.tar.gz
  • Upload date:
  • Size: 217.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.37.tar.gz
Algorithm Hash digest
SHA256 ba417fde3d88fffd21b4948a8a49ec2ba6c3189ba5daa2abadb355c3bd76faa2
MD5 d6bfe59e51079b5d55fd4826f21da112
BLAKE2b-256 9f5916a3f1675a1dbda29a6d1d986f5ebccb1c152f7a8058dede852d3a92fcdf

See more details on using hashes here.

File details

Details for the file tfkit-0.7.37-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.37-py3.7.egg
  • Upload date:
  • Size: 185.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.37-py3.7.egg
Algorithm Hash digest
SHA256 733951ea9809797d0166bef916dddd7bcc177ec19226cb852d1e71900937d1b5
MD5 a24d2bc4131974c8f78b214d2d995b83
BLAKE2b-256 b4a20010dd0270b54170d6e003e22962fc6615ad2561a7188f322ffa6f87c1cc

See more details on using hashes here.

File details

Details for the file tfkit-0.7.37-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.37-py3-none-any.whl
  • Upload date:
  • Size: 80.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.37-py3-none-any.whl
Algorithm Hash digest
SHA256 7124b76eab3cb885aacd8255bcadc91e7bf2c0548ddb8d79feb6994383fd8bba
MD5 736ba8c74cdfddfce069941953a74bc4
BLAKE2b-256 1d685733ae1c1cf2f74c2efd4e182abd1df5324445bf3ebf23d6232e12dae589

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page