Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.38.tar.gz (217.5 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.38-py3.7.egg (185.3 kB view details)

Uploaded Source

tfkit-0.7.38-py3-none-any.whl (80.5 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.38.tar.gz.

File metadata

  • Download URL: tfkit-0.7.38.tar.gz
  • Upload date:
  • Size: 217.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.38.tar.gz
Algorithm Hash digest
SHA256 2648d25d53cfabead250adfb82bbef21e7c48cb42dd72539c4e315fce3f4cea3
MD5 8c521abffe78420a7f534a85e0140b81
BLAKE2b-256 d9f545fad3ca168264a0fbf40b4ec67b685ffd8dace71fc4f42390c3b985707f

See more details on using hashes here.

File details

Details for the file tfkit-0.7.38-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.38-py3.7.egg
  • Upload date:
  • Size: 185.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.38-py3.7.egg
Algorithm Hash digest
SHA256 092243409265c9b8f1fe3e959841f2ae1224843e495fd47ac9b84825b2a48ef5
MD5 8dabaf270fda7a33cec03d45305a995c
BLAKE2b-256 bfd209cb7e988b55956383a4c805c2649991a76ba0dcbd7865ead04f79662952

See more details on using hashes here.

File details

Details for the file tfkit-0.7.38-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.38-py3-none-any.whl
  • Upload date:
  • Size: 80.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.38-py3-none-any.whl
Algorithm Hash digest
SHA256 ac46bf2a11d54488f55c7c601164cbb05d18d475cd77230feba2b2be25d9a9ea
MD5 ccd3a3f66496826593c1699641174eca
BLAKE2b-256 57272d31ce4d477a017e8dcc1dbb0883c4faa8104830144fff9987db558b4e40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page