Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.39.tar.gz (217.5 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.39-py3.7.egg (185.4 kB view details)

Uploaded Source

tfkit-0.7.39-py3-none-any.whl (80.5 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.39.tar.gz.

File metadata

  • Download URL: tfkit-0.7.39.tar.gz
  • Upload date:
  • Size: 217.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.39.tar.gz
Algorithm Hash digest
SHA256 5fe79f26696f3e31b169628a137e1cf1a099cbd89518dc3154fe4743c6f6c7e9
MD5 9721305be7d085731b8288593ae21d3d
BLAKE2b-256 e2fe9eff4bc88baf24890d318a0f50f8d2cb8b97e71bcaa36e7b9185212e0a8f

See more details on using hashes here.

File details

Details for the file tfkit-0.7.39-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.39-py3.7.egg
  • Upload date:
  • Size: 185.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.39-py3.7.egg
Algorithm Hash digest
SHA256 8e0c825d8bd2fad1964b91f7703e109e0d05b0db965d5a9e88e9f6bd97e6b1f7
MD5 c36f978a0b876ea1c499b5a6ed9b6b9d
BLAKE2b-256 a69f3b0ae99121826c5c8f872423e41e2dd4150521d126490b581ac2e81f4dd0

See more details on using hashes here.

File details

Details for the file tfkit-0.7.39-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.39-py3-none-any.whl
  • Upload date:
  • Size: 80.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.39-py3-none-any.whl
Algorithm Hash digest
SHA256 fd317c2fa0d26b3321994037b7e5c7ae7514d7e306e0ca7cf08502ff562dea1e
MD5 224fbe962af9b7bc1a7b620f4e15ecbc
BLAKE2b-256 c8408f45508ff25da4130cb2202b5273d6d39792ad145ea9501c8721fde4a790

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page