Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.45.tar.gz (218.9 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.45-py3.7.egg (187.9 kB view details)

Uploaded Source

tfkit-0.7.45-py3-none-any.whl (81.6 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.45.tar.gz.

File metadata

  • Download URL: tfkit-0.7.45.tar.gz
  • Upload date:
  • Size: 218.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.45.tar.gz
Algorithm Hash digest
SHA256 2d529900f59217599c01abff599446f5b367cd5d177cb39b952fb351474dca0d
MD5 3819c42d9f684d89e654685068d964b7
BLAKE2b-256 3fdbd5c7b374bf11ce545e8ff2d5019a6e1653eeb172a90d4c298d8fe7e6f21b

See more details on using hashes here.

File details

Details for the file tfkit-0.7.45-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.45-py3.7.egg
  • Upload date:
  • Size: 187.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.45-py3.7.egg
Algorithm Hash digest
SHA256 d5f76b7b817f908c386b7d16f5cc80d1d5aef6d3f2658d55727a56c3af99c7d0
MD5 4ec4ce9cb7388aa4bf88bdfb491fc53b
BLAKE2b-256 7f7aa2a3976ed30702b86dfe6d3e72e7a4d56ab2c0d4a79bc128339121123b1d

See more details on using hashes here.

File details

Details for the file tfkit-0.7.45-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.45-py3-none-any.whl
  • Upload date:
  • Size: 81.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.45-py3-none-any.whl
Algorithm Hash digest
SHA256 3fc919ad8c6c2edce468c037565315a4168beb6560f8eb2d16a06b3bb35a3a35
MD5 753c44d6f5f50b609563e1f3afb28ec1
BLAKE2b-256 19467e20689eed32d188c14670440e25762d3e06572c86dfcd18ebb957e5213e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page