Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.46.tar.gz (218.9 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.46-py3.7.egg (188.0 kB view details)

Uploaded Source

tfkit-0.7.46-py3-none-any.whl (81.6 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.46.tar.gz.

File metadata

  • Download URL: tfkit-0.7.46.tar.gz
  • Upload date:
  • Size: 218.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.46.tar.gz
Algorithm Hash digest
SHA256 2dabd7f91283d9ed04b62131b7f989ef1d564f26ee7a9cfaac0385bcbb0a0501
MD5 854678d0cdb31de83191f0a417a4b9b9
BLAKE2b-256 ed33f1b10804566cfb92d82cde01ab45c3a8267eeb8176d3c7130e424f647ccf

See more details on using hashes here.

File details

Details for the file tfkit-0.7.46-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.46-py3.7.egg
  • Upload date:
  • Size: 188.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.46-py3.7.egg
Algorithm Hash digest
SHA256 b544a968eeafd83bc54a8c2338ff7e43ed36aa130fd347f9c55100634afe63fa
MD5 95faf398e6f614a7341f69d907e49d0a
BLAKE2b-256 2cb1d98d090d325f740f345434bef558791e8b55f7dfda19a8bd589d45133e4e

See more details on using hashes here.

File details

Details for the file tfkit-0.7.46-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.46-py3-none-any.whl
  • Upload date:
  • Size: 81.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.46-py3-none-any.whl
Algorithm Hash digest
SHA256 14c7d92d27e0d9bc4512441814810258211751aa1292406fe271e0d5d2809a1e
MD5 efdeaa982f8b4f235044c781f49caefb
BLAKE2b-256 a93e4d6482cdeb01d777bb59e922d04f4160e3a3b734d7e386a586998a2ed587

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page