Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.47.tar.gz (218.9 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.47-py3.7.egg (188.0 kB view details)

Uploaded Source

tfkit-0.7.47-py3-none-any.whl (81.6 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.47.tar.gz.

File metadata

  • Download URL: tfkit-0.7.47.tar.gz
  • Upload date:
  • Size: 218.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.47.tar.gz
Algorithm Hash digest
SHA256 a6df0a8e4fe0ad2426ef1d33f2cafb7afe43f86031aa912991c419fd44074145
MD5 eca3737b4cc186552c8f842ae887a2dc
BLAKE2b-256 c6c1b097d6e8bf24bb0bed2c83145e4adeed482a8cfe089b1cc2c17b88f1d3ce

See more details on using hashes here.

File details

Details for the file tfkit-0.7.47-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.47-py3.7.egg
  • Upload date:
  • Size: 188.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.47-py3.7.egg
Algorithm Hash digest
SHA256 d59016e5fb3878f1b3ae8d052ae5f545c33336b484d1b26c07df55764cbe2daa
MD5 a0098ad8fd861762da8c84c524a599ed
BLAKE2b-256 ec5025d0ccaa32265bd64f60d00b077e2519c583f1b47a2d381b0029f5a81a38

See more details on using hashes here.

File details

Details for the file tfkit-0.7.47-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.47-py3-none-any.whl
  • Upload date:
  • Size: 81.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.47-py3-none-any.whl
Algorithm Hash digest
SHA256 30a3c696a07931f32e68e19e00a7e95b9019580c720835594d357534501105f7
MD5 68d97cec4b96cafe9eafa3fc3303acf8
BLAKE2b-256 6d87685bc5f8eee87122c716a070da8f912f8359747853788d9d6c59c81b902a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page