Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.48.tar.gz (219.0 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.48-py3.7.egg (188.1 kB view details)

Uploaded Source

tfkit-0.7.48-py3-none-any.whl (81.6 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.48.tar.gz.

File metadata

  • Download URL: tfkit-0.7.48.tar.gz
  • Upload date:
  • Size: 219.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.48.tar.gz
Algorithm Hash digest
SHA256 ca73e931f77fde73e693c5b7e77f71577794f4a50cbf904c9e112fe36d9c8efa
MD5 3fb8e87be15893efd137b8db6ae80a66
BLAKE2b-256 01222302059a1d115174999eb4bca4a114bfbcc9a7b3838d0df9d4f33a81885d

See more details on using hashes here.

File details

Details for the file tfkit-0.7.48-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.48-py3.7.egg
  • Upload date:
  • Size: 188.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.48-py3.7.egg
Algorithm Hash digest
SHA256 3f1e8119b864e1f3c9a3149ab10e123611e1b07657347ae1627eb2b96cdd0b09
MD5 b1b92636b153e96c7865cdda0a995aa9
BLAKE2b-256 8abf0a5b9ce50569bdbd9f7338af17c24786fae3e7d4aa7687f2fd42a1a2cb40

See more details on using hashes here.

File details

Details for the file tfkit-0.7.48-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.48-py3-none-any.whl
  • Upload date:
  • Size: 81.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.48-py3-none-any.whl
Algorithm Hash digest
SHA256 9be6a7e747ae980ac684f1464023dd4b290c680fe3a96aff0918ec5b904bf94d
MD5 2e048bd034e3f18bc0db87e432eaeb0a
BLAKE2b-256 a20c3159791569867a0c938178e0dd88c8976c120274674db356a1adc0957231

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page