Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.49.tar.gz (219.7 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.49-py3.7.egg (198.6 kB view details)

Uploaded Source

tfkit-0.7.49-py3-none-any.whl (86.1 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.49.tar.gz.

File metadata

  • Download URL: tfkit-0.7.49.tar.gz
  • Upload date:
  • Size: 219.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.49.tar.gz
Algorithm Hash digest
SHA256 3fc82ae179972e45ab954f51c11577c06b4c2848f087284e17f581fac878269b
MD5 3e1a7de43c8e8935b94757dbd90ebec7
BLAKE2b-256 6c4349f8aed24273dca774d09b60dbe3544a04762d5053813d67a7340e5b9991

See more details on using hashes here.

File details

Details for the file tfkit-0.7.49-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.49-py3.7.egg
  • Upload date:
  • Size: 198.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.49-py3.7.egg
Algorithm Hash digest
SHA256 059328a05a925f3af443a9a71bb11e3b960cadd96b66170b6fac28cee072bab3
MD5 d28f44692753d9d89ce7a47c2ed34ae0
BLAKE2b-256 85e62b7dddeaa00d36800f39726a5f97fe751dd4fcec1c8d4139c7998751efce

See more details on using hashes here.

File details

Details for the file tfkit-0.7.49-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.49-py3-none-any.whl
  • Upload date:
  • Size: 86.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.49-py3-none-any.whl
Algorithm Hash digest
SHA256 b0102f4176708706189fe26102c81313f51cdd981846894723fe657f0cf6d796
MD5 527de05e215c75018b737d868d15372d
BLAKE2b-256 a5694764da90b4b4e7f7788e3a909fe55635a31014358695b794eb2d9a12e7b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page