Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.50.tar.gz (220.1 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.50-py3.7.egg (199.4 kB view details)

Uploaded Source

tfkit-0.7.50-py3-none-any.whl (86.5 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.50.tar.gz.

File metadata

  • Download URL: tfkit-0.7.50.tar.gz
  • Upload date:
  • Size: 220.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.50.tar.gz
Algorithm Hash digest
SHA256 fb43481b36a5344840495261760a18c185ab7db42ce8299b1fb1b60e649a41fe
MD5 432cf03c8988905213b1e4df2a4fc2d5
BLAKE2b-256 2813c5c2d624ecf1e92e0b4e084f39f7a8144a1c431ec2bd7e6fdada4e5a1744

See more details on using hashes here.

File details

Details for the file tfkit-0.7.50-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.50-py3.7.egg
  • Upload date:
  • Size: 199.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.50-py3.7.egg
Algorithm Hash digest
SHA256 5fb9a9a64fc3a0b4229e9ab6df0b17071875f27a7f8edbfc924b40f3271788dc
MD5 78da3dcad22a2bbd6f8e2ef0e0b6c0a4
BLAKE2b-256 1a5e26bac55f1be94d8738f5a82852062798affe991a6a75e2b15771ee1f933a

See more details on using hashes here.

File details

Details for the file tfkit-0.7.50-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.50-py3-none-any.whl
  • Upload date:
  • Size: 86.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.50-py3-none-any.whl
Algorithm Hash digest
SHA256 dde2f849f0081fd7d2f2ab9d40c90ace88904cd2ae89498c6aedc1a9abd5f4d6
MD5 c5f741108774de7179efa145dbfe95f1
BLAKE2b-256 0c6af1e86a2faa7e58cd9a4b156542bdc400591f9888c09d83361a537e886bbd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page