Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.54.tar.gz (220.3 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.54-py3.7.egg (196.9 kB view details)

Uploaded Source

tfkit-0.7.54-py3-none-any.whl (85.7 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.54.tar.gz.

File metadata

  • Download URL: tfkit-0.7.54.tar.gz
  • Upload date:
  • Size: 220.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.54.tar.gz
Algorithm Hash digest
SHA256 07923f80f4c7592372987d42225a352a1b537dcab5167bc990b0c44f2e3423f8
MD5 70cbd9dc3d90ba9480f57942bfe9b7b8
BLAKE2b-256 b4c36123d430264819f1f0f8321228440e8a5c04f85d2ff55775ab95c1e420ce

See more details on using hashes here.

File details

Details for the file tfkit-0.7.54-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.54-py3.7.egg
  • Upload date:
  • Size: 196.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.54-py3.7.egg
Algorithm Hash digest
SHA256 63ecf741a148a85ab31f8ed9c359d63227dfd63ba399f434fcacb3f0da7ba9f7
MD5 3441cd19103ce0137ce3fc271d96e047
BLAKE2b-256 1b605e048e5e9dd4cf1433e2e36b2af6e481744e52af718051472959ca72543d

See more details on using hashes here.

File details

Details for the file tfkit-0.7.54-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.54-py3-none-any.whl
  • Upload date:
  • Size: 85.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.54-py3-none-any.whl
Algorithm Hash digest
SHA256 56587387540b51d72859f74f3466fb87c1391ee424cbc8847252a7d51d1c39fc
MD5 a95e93f07c475f4d55a08be589d30633
BLAKE2b-256 4e44f0dff0629d7403e52b97c25caa0e95132c78c12076cc62c1a9f3523089ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page