Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.7.55.tar.gz (220.3 kB view details)

Uploaded Source

Built Distributions

tfkit-0.7.55-py3.7.egg (195.7 kB view details)

Uploaded Source

tfkit-0.7.55-py3-none-any.whl (85.1 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.7.55.tar.gz.

File metadata

  • Download URL: tfkit-0.7.55.tar.gz
  • Upload date:
  • Size: 220.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.55.tar.gz
Algorithm Hash digest
SHA256 127cba94ee717750729ad13408e3151197193a709ee3f3f00c8ff1a36785c72b
MD5 3585e8df35d8fe2bb28bbd73b7f9807e
BLAKE2b-256 512628fa69938a61135b6f117b67e832f7e12793e236a13e49b0cca504c6779f

See more details on using hashes here.

File details

Details for the file tfkit-0.7.55-py3.7.egg.

File metadata

  • Download URL: tfkit-0.7.55-py3.7.egg
  • Upload date:
  • Size: 195.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.55-py3.7.egg
Algorithm Hash digest
SHA256 53c478abcdf381c265c2f305b08f3e695b9c85cf2d25029d61b6002817f845be
MD5 9b467eeec28f52410a6d47fc20a9b8e7
BLAKE2b-256 48431bfde3ef42ddb237d14f3d1e18fb9737e20c6c93c3c2fcf7ecc203acf3db

See more details on using hashes here.

File details

Details for the file tfkit-0.7.55-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.7.55-py3-none-any.whl
  • Upload date:
  • Size: 85.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.7.55-py3-none-any.whl
Algorithm Hash digest
SHA256 dd06a825d37868958673f624c6207bbc9f14fa43aaf3589c5095025470949e7a
MD5 9771a5176b05304f24cca31563e89f2f
BLAKE2b-256 2efe0aa181b1cbc3ae8dde483c9d54460d9b9124f227a022a36b2e0be12177ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page