Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.8.0.tar.gz (220.3 kB view details)

Uploaded Source

Built Distributions

tfkit-0.8.0-py3.7.egg (195.6 kB view details)

Uploaded Source

tfkit-0.8.0-py3-none-any.whl (85.0 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.8.0.tar.gz.

File metadata

  • Download URL: tfkit-0.8.0.tar.gz
  • Upload date:
  • Size: 220.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.8.0.tar.gz
Algorithm Hash digest
SHA256 bbdfd5ffe974675e8ff773f087a8878a14243dcde39f2b6183f672c97e69a120
MD5 dcdf31e4dcad5e0a8a1f88bf8981959b
BLAKE2b-256 4f0fa25433e1bea8a0c4df71f992f9fdfc56249dcb46f0aae6871b961f707c49

See more details on using hashes here.

File details

Details for the file tfkit-0.8.0-py3.7.egg.

File metadata

  • Download URL: tfkit-0.8.0-py3.7.egg
  • Upload date:
  • Size: 195.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.8.0-py3.7.egg
Algorithm Hash digest
SHA256 6d15fd769711aa74f90092e62b11375783f8f6d7f8a30146c3bb9066e358d3ed
MD5 8eb24f083aff2aac68d49f5aeb8a6960
BLAKE2b-256 bd9e3d1781414d8aadaaa21a9782ba3d04b9747ac81ae5e3f117b4ba560e43e3

See more details on using hashes here.

File details

Details for the file tfkit-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 85.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4058679575c65d372758c393d942e35944882d6e9ef76243299235104a27079f
MD5 28f069766fe708b91e5215103ad345d6
BLAKE2b-256 746e0d532c8264881a3a6273806d2a5ba89d128c9d58ddbf5674897b8dff99bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page