Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a deep natural language process framework for classification/tagging/question answering/embedding study and language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model
Self-supervise Learning :diving_mask: mask language model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install tfkit

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--model clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--model roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --model clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.8.1.tar.gz (220.3 kB view details)

Uploaded Source

Built Distributions

tfkit-0.8.1-py3.7.egg (195.7 kB view details)

Uploaded Source

tfkit-0.8.1-py3-none-any.whl (85.1 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.8.1.tar.gz.

File metadata

  • Download URL: tfkit-0.8.1.tar.gz
  • Upload date:
  • Size: 220.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.8.1.tar.gz
Algorithm Hash digest
SHA256 8ec0e9d7457eb875381b25fb7fba93c723dda8028e47460b37c27c07deb9c7b1
MD5 8010c1262a772e99622a8575cce5dcab
BLAKE2b-256 4a9891509cf7c6fe08d0b2ffb316414b05189b1fed2d915e13f0e6dd75f35e1b

See more details on using hashes here.

File details

Details for the file tfkit-0.8.1-py3.7.egg.

File metadata

  • Download URL: tfkit-0.8.1-py3.7.egg
  • Upload date:
  • Size: 195.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.8.1-py3.7.egg
Algorithm Hash digest
SHA256 4958ac46fb2dd4d896bb11aa5cc069351b0c409c0f137bac6e4934496f633a75
MD5 4dee53c406cf7565f8281e64b535afd8
BLAKE2b-256 84ccc1a46921f7ce83712bf14c35cb0696c3203bdb665b8e067d7f2454fe6ce2

See more details on using hashes here.

File details

Details for the file tfkit-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 85.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for tfkit-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cf0cee6e3ee3e227b660567495983d16068769b81411ad73af790ff611a7d61c
MD5 36d1080011b78ce137a3c7e65a1428d2
BLAKE2b-256 16d30ad41f05ecdc746432732ff136573c80c93fb7c941d4567ace8eef7c1a27

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page