Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a tool kit mainly for language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install git+https://github.com/voidful/TFkit.git@refactor-dataset

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--task clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--task roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --task clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Not maintained task

Due to time constraints, the following tasks are temporarily not supported

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Self-supervise Learning :diving_mask: mask language model

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.8.10.tar.gz (220.3 kB view details)

Uploaded Source

Built Distribution

tfkit-0.8.10-py3-none-any.whl (54.3 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.8.10.tar.gz.

File metadata

  • Download URL: tfkit-0.8.10.tar.gz
  • Upload date:
  • Size: 220.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for tfkit-0.8.10.tar.gz
Algorithm Hash digest
SHA256 3ace4edeace3c2319ba41bb89f5f3f476322cec66289c6ceb70cd330855d8a22
MD5 80eaa20b444e5bbde7d51f17f2212f3e
BLAKE2b-256 06aa7ebbfbc54173657a5bdd13c8c3b5c562f29de78f71655b6a7c36ea15ae89

See more details on using hashes here.

File details

Details for the file tfkit-0.8.10-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.8.10-py3-none-any.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for tfkit-0.8.10-py3-none-any.whl
Algorithm Hash digest
SHA256 ff306982955de4d132ea031dd453a6b7239bd502dd056111b4e835a40bc62ef4
MD5 e7107f87528067ba8f28e6c836971213
BLAKE2b-256 ac25df87027647e6a20187254cb57464945d196b56ec74d11319b398022f0b52

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page