Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a tool kit mainly for language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install git+https://github.com/voidful/TFkit.git@refactor-dataset

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--task clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--task roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --task clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Not maintained task

Due to time constraints, the following tasks are temporarily not supported

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Self-supervise Learning :diving_mask: mask language model

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.8.11.tar.gz (220.4 kB view details)

Uploaded Source

Built Distribution

tfkit-0.8.11-py3-none-any.whl (54.3 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.8.11.tar.gz.

File metadata

  • Download URL: tfkit-0.8.11.tar.gz
  • Upload date:
  • Size: 220.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for tfkit-0.8.11.tar.gz
Algorithm Hash digest
SHA256 789e68c95ee7d865c70d9fb73a1504d6d142e3d08a80eb7145f94e3c6cd9ef55
MD5 84343dbbfa233741b3872c0eb74230ce
BLAKE2b-256 ee41858b5b67d8bdbd5953395db372877febc631f979550ead171ba4bdf438c6

See more details on using hashes here.

File details

Details for the file tfkit-0.8.11-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.8.11-py3-none-any.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for tfkit-0.8.11-py3-none-any.whl
Algorithm Hash digest
SHA256 099743c4b60bcbaa7ca036aef78b50fb2eeaa0c891489611d224298e1142e021
MD5 e6d51d374f44ee2ac7ef988ddbbc9090
BLAKE2b-256 2dd14ea4df4f9742806aacd1ee44c97aec4478ed932326177655abfd307c729c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page