Skip to main content

Transformers kit - Multi-task QA/Tagging/Multi-label Multi-Class Classification/Generation with BERT/ALBERT/T5/BERT

Project description




PyPI Download Build Last Commit CodeFactor Visitor

What is it

TFKit is a tool kit mainly for language generation.
It leverages the use of transformers on many tasks with different models in this all-in-one framework.
All you need is a little change of config.

Task Supported

With transformer models - BERT/ALBERT/T5/BART......

Text Generation :memo: seq2seq language model
Text Generation :pen: causal language model
Text Generation :printer: once generation model / once generation model with ctc loss
Text Generation :pencil: onebyone generation model

Getting Started

Learn more from the document.

How To Use

Step 0: Install

Simple installation from PyPI

pip install git+https://github.com/voidful/TFkit.git@refactor-dataset

Step 1: Prepare dataset in csv format

Task format

input, target

Step 2: Train model

tfkit-train \
--task clas \
--config xlm-roberta-base \
--train training_data.csv \
--test testing_data.csv \
--lr 4e-5 \
--maxlen 384 \
--epoch 10 \
--savedir roberta_sentiment_classificer

Step 3: Evaluate

tfkit-eval \
--task roberta_sentiment_classificer/1.pt \
--metric clas \
--valid testing_data.csv

Advanced features

Multi-task training
tfkit-train \
  --task clas clas \
  --config xlm-roberta-base \
  --train training_data_taskA.csv training_data_taskB.csv \
  --test testing_data_taskA.csv testing_data_taskB.csv \
  --lr 4e-5 \
  --maxlen 384 \
  --epoch 10 \
  --savedir roberta_sentiment_classificer_multi_task

Not maintained task

Due to time constraints, the following tasks are temporarily not supported

Classification :label: multi-class and multi-label classification
Question Answering :page_with_curl: extractive qa
Question Answering :radio_button: multiple-choice qa
Tagging :eye_speech_bubble: sequence level tagging / sequence level with crf
Self-supervise Learning :diving_mask: mask language model

Supplement

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.8.5.tar.gz (220.1 kB view details)

Uploaded Source

Built Distribution

tfkit-0.8.5-py3-none-any.whl (54.2 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.8.5.tar.gz.

File metadata

  • Download URL: tfkit-0.8.5.tar.gz
  • Upload date:
  • Size: 220.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for tfkit-0.8.5.tar.gz
Algorithm Hash digest
SHA256 ee1bc2c9c0fe5f05a502e3114df2958ec50ff9cc9e6c5a79dc630ae2061c7ab5
MD5 9c63655937b6f84d2f21dcd444bd87a1
BLAKE2b-256 950e644bf4e71e204ad4169ef3e96d8dcca55f21a7f3b2bf85fb7ae290edc36a

See more details on using hashes here.

File details

Details for the file tfkit-0.8.5-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.8.5-py3-none-any.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.10

File hashes

Hashes for tfkit-0.8.5-py3-none-any.whl
Algorithm Hash digest
SHA256 8e5e3554832805c71a8eda82b0b717b171a35bda2c711247804f2361051512af
MD5 ed44f8717bd6ede16c41cd339b822b25
BLAKE2b-256 1a8a11c2818dd7b6436ee73e2938f1fc3d859e2f689589d51351b7309d691c39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page