Skip to main content

Re-implementation of some librosa function for tensorflow. Reproduction from torchlibrosa.

Project description

tflibrosa

re-implementation of torch librosa for tensorflow. It is usefull if you want to compute Spectrogram on GPU for faster inference instead of using librosa.

Installation

pip install tflibrosa

Example

To do some inference on single sample, you can use python script in examples/ folder or use as follows:

import numpy as np 
from tflibrosa import STFT, Spectrogram, LogmelFilterBank
import librosa
import tensorflow as tf 
audio = np.random.uniform(0,1 ,(32000 * 5))
print(audio.shape)

sample_rate = 32000
n_fft = 2048
hop_size = 512
window = 'hann'
pad_mode = 'reflect'
mel_bins = 64
ref = 1.0
amin = 1e-10
fmin = 20
fmax = 16000 
top_db = 80.0
center = True 
dtype=None

spectrogram_extractor = Spectrogram(n_fft=n_fft, hop_length=hop_size, 
                win_length=n_fft, window=window, center=center, pad_mode=pad_mode, 
                freeze_parameters=True, dtype="float32")

# Logmel feature extractor
logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=n_fft, is_log=True, 
    n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, 
    freeze_parameters=True, dtype="float32")


spectrogram = spectrogram_extractor(audio[None, :])

mel_spectrogram = logmel_extractor(spectrogram)

print(mel_spectrogram) # (batch size, num_channels, timestamps)

Acknowledgement

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tflibrosa-0.0.2-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file tflibrosa-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: tflibrosa-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for tflibrosa-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f4739b19c3f3340e561e32a4b14e691fd8ef95fb01b7be98421672f64993cfe6
MD5 93d7f78e5d1c843a0151b46af2db82b2
BLAKE2b-256 f4e0a856218c836498b59d1f99c2fb0217cc49f45d5c850b5f4b27b636cbca96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page