Tensorflow on Mesos
Project description
TFMesos is a lightweight framework to help running distributed Tensorflow Machine Learning tasks on Apache Mesos within Docker and Nvidia-Docker .
TFMesos dynamically allocates resources from a Mesos cluster, builds a distributed training cluster for Tensorflow, and makes different training tasks mangeed and isolated in the shared Mesos cluster with the help of Docker.
Prerequisites
For Mesos >= 1.0.0:
Mesos Cluster (cf: Mesos Getting Started). All nodes in the cluster should be reachable using their hostnames, and all nodes have identical /etc/passwd and /etc/group.
Setup Mesos Agent to enable Mesos Containerizer and Mesos Nvidia GPU Support (optional). eg: mesos-agent --containerizers=mesos --image_providers=docker --isolation=filesystem/linux,docker/runtime,cgroups/devices,gpu/nvidia
(optional) A Distributed Filesystem (eg: MooseFS)
Ensure latest TFMesos docker image (tfmesos/tfmesos) is pulled across the whole cluster
For Mesos < 1.0.0:
Mesos Cluster (cf: Mesos Getting Started). All nodes in the cluster should be reachable using their hostnames, and all nodes have identical /etc/passwd and /etc/group.
Docker (cf: Docker Get Start Tutorial)
Mesos Docker Containerizer Support (cf: Mesos Docker Containerizer)
(optional) Nvidia-docker installation (cf: Nvidia-docker installation) and make sure nvidia-plugin is accessible from remote host (with -l 0.0.0.0:3476)
(optional) A Distributed Filesystem (eg: MooseFS)
Ensure latest TFMesos docker image (tfmesos/tfmesos) is pulled across the whole cluster
If you are using AWS G2 instance, here is a sample script to setup most of there prerequisites.
Running in replica mode
This mode is called Between-graph replication in official Distributed Tensorflow Howto
Most distributed training models that Google has open sourced (such as mnist_replica and inception) are using this mode. In this mode, two kind of Jobs are defined with the names ‘ps’ and ‘wocker’. ‘ps’ tasks act as ‘Parameter Server’ and ‘worker’ tasks run the actual training process.
Here we use our modified ‘mnist_replica’ as example:
Checkout the mnist example codes into a directory in shared filesystem, eg: /nfs/mnist
Assume Mesos master is mesos-master:5050
Now we can launch this script using following commands:
CPU:
$ docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
--net=host \
-v /nfs/mnist:/nfs/mnist \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u` \
-w /nfs/mnist \
tfmesos/tfmesos \
tfrun -w 1 -s 1 \
-V /nfs/mnist:/nfs/mnist \
-- python mnist_replica.py \
--ps_hosts {ps_hosts} --worker_hosts {worker_hosts} \
--job_name {job_name} --worker_index {task_index}
GPU (1 GPU per worker):
$ nvidia-docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
--net=host \
-v /nfs/mnist:/nfs/mnist \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u` \
-w /nfs/mnist \
tfmesos/tfmesos \
tfrun -w 1 -s 1 -Gw 1 -- python mnist_replica.py \
--ps_hosts {ps_hosts} --worker_hosts {worker_hosts} \
--job_name {job_name} --worker_index {task_index}
Note:
In this mode, tfrun is used to prepare the cluster and launch the training script on each node, and worker #0 (the chief worker) will be launched in the local container. tfrun will substitute {ps_hosts}, {worker_hosts}, {job_name}, {task_index} with corresponding values of each task.
Running in fine-grained mode
This mode is called In-graph replication in official Distributed Tensorflow Howto
In this mode, we have more control over the cluster spec. All nodes in the cluster is remote and just running a Grpc server. Each worker is driven by a local thread to run the training task.
Here we use our modified mnist as example:
Checkout the mnist example codes into a directory, eg: /tmp/mnist
Assume Mesos master is mesos-master:5050
Now we can launch this script using following commands:
CPU:
$ docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
--net=host \
-v /tmp/mnist:/tmp/mnist \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u` \
-w /tmp/mnist \
tfmesos/tfmesos \
python mnist.py
GPU (1 GPU per worker):
$ nvidia-docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
--net=host \
-v /tmp/mnist:/tmp/mnist \
-v /etc/passwd:/etc/passwd:ro \
-v /etc/group:/etc/group:ro \
-u `id -u` \
-w /tmp/mnist \
tfmesos/tfmesos \
python mnist.py --worker-gpus 1
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.