Skip to main content

Tensorflow on Mesos

Project description

https://img.shields.io/travis/douban/tfmesos.svg https://img.shields.io/pypi/v/tfmesos.svg https://img.shields.io/docker/automated/tfmesos/tfmesos.svg

TFMesos is a lightweight framework to help running distributed Tensorflow Machine Learning tasks on Apache Mesos within Docker and Nvidia-Docker .

TFMesos dynamically allocates resources from a Mesos cluster, builds a distributed training cluster for Tensorflow, and makes different training tasks mangeed and isolated in the shared Mesos cluster with the help of Docker.

Prerequisites

  • For Mesos >= 1.0.0:

  1. Mesos Cluster (cf: Mesos Getting Started). All nodes in the cluster should be reachable using their hostnames, and all nodes have identical /etc/passwd and /etc/group.

  2. Setup Mesos Agent to enable Mesos Containerizer and Mesos Nvidia GPU Support (optional). eg: mesos-agent --containerizers=mesos --image_providers=docker --isolation=filesystem/linux,docker/runtime,cgroups/devices,gpu/nvidia

  3. (optional) A Distributed Filesystem (eg: MooseFS)

  4. Ensure latest TFMesos docker image (tfmesos/tfmesos) is pulled across the whole cluster

  • For Mesos < 1.0.0:

  1. Mesos Cluster (cf: Mesos Getting Started). All nodes in the cluster should be reachable using their hostnames, and all nodes have identical /etc/passwd and /etc/group.

  2. Docker (cf: Docker Get Start Tutorial)

  3. Mesos Docker Containerizer Support (cf: Mesos Docker Containerizer)

  4. (optional) Nvidia-docker installation (cf: Nvidia-docker installation) and make sure nvidia-plugin is accessible from remote host (with -l 0.0.0.0:3476)

  5. (optional) A Distributed Filesystem (eg: MooseFS)

  6. Ensure latest TFMesos docker image (tfmesos/tfmesos) is pulled across the whole cluster

If you are using AWS G2 instance, here is a sample script to setup most of there prerequisites.

Running simple Test

After setting up the mesos and pulling the docker image on a single node (or a cluser), you should be able to use the following command to run a simple test.

$ docker run -e MESOS_MASTER=mesos-master:5050 \
    -e DOCKER_IMAGE=tfmesos/tfmesos \
    --net=host \
    -v /path-to-your-tfmesos-code/tfmesos/examples/plus.py:/tmp/plus.py \
    --rm \
    -it \
    tfmesos/tfmesos \
    python /tmp/plus.py mesos-master:5050

Successfully running the test should result in an output of 42 on the console.

Running in replica mode

This mode is called Between-graph replication in official Distributed Tensorflow Howto

Most distributed training models that Google has open sourced (such as mnist_replica and inception) are using this mode. In this mode, two kind of Jobs are defined with the names ‘ps’ and ‘wocker’. ‘ps’ tasks act as ‘Parameter Server’ and ‘worker’ tasks run the actual training process.

Here we use our modified ‘mnist_replica’ as example:

  1. Checkout the mnist example codes into a directory in shared filesystem, eg: /nfs/mnist

  2. Assume Mesos master is mesos-master:5050

  3. Now we can launch this script using following commands:

CPU:

$ docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /nfs/mnist:/nfs/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /nfs/mnist \
             tfmesos/tfmesos \
             tfrun -w 1 -s 1  \
             -V /nfs/mnist:/nfs/mnist \
             -- python mnist_replica.py \
             --ps_hosts {ps_hosts} --worker_hosts {worker_hosts} \
             --job_name {job_name} --worker_index {task_index}

GPU (1 GPU per worker):

$ nvidia-docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /nfs/mnist:/nfs/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /nfs/mnist \
             tfmesos/tfmesos \
             tfrun -w 1 -s 1 -Gw 1 -- python mnist_replica.py \
             --ps_hosts {ps_hosts} --worker_hosts {worker_hosts} \
             --job_name {job_name} --worker_index {task_index}

Note:

In this mode, tfrun is used to prepare the cluster and launch the training script on each node, and worker #0 (the chief worker) will be launched in the local container. tfrun will substitute {ps_hosts}, {worker_hosts}, {job_name}, {task_index} with corresponding values of each task.

Running in fine-grained mode

This mode is called In-graph replication in official Distributed Tensorflow Howto

In this mode, we have more control over the cluster spec. All nodes in the cluster is remote and just running a Grpc server. Each worker is driven by a local thread to run the training task.

Here we use our modified mnist as example:

  1. Checkout the mnist example codes into a directory, eg: /tmp/mnist

  2. Assume Mesos master is mesos-master:5050

  3. Now we can launch this script using following commands:

CPU:

$ docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /tmp/mnist:/tmp/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /tmp/mnist \
             tfmesos/tfmesos \
             python mnist.py

GPU (1 GPU per worker):

$ nvidia-docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /tmp/mnist:/tmp/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /tmp/mnist \
             tfmesos/tfmesos \
             python mnist.py --worker-gpus 1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfmesos-0.0.2.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

tfmesos-0.0.2-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file tfmesos-0.0.2.tar.gz.

File metadata

  • Download URL: tfmesos-0.0.2.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tfmesos-0.0.2.tar.gz
Algorithm Hash digest
SHA256 75c79d33934c21d1f5d5c84ea72d83e176bdc5f415c385da8e48263bfdeb15e5
MD5 51f7fb825c6f9b00870b2b30ad72c244
BLAKE2b-256 d0cc3b1c3810abd6a11524c2409b71218ab4ca566631ed5734251f1a62de4080

See more details on using hashes here.

File details

Details for the file tfmesos-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for tfmesos-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 15d9566310016cc29153c094cfa95755815c52a6f3e5696f2908cad06072aa3c
MD5 572f92ec43d46920ad4ad5add32a4b76
BLAKE2b-256 c7312d17e74279d2e44f5891e5f94a6047bfa24813bdddea9302a0f9c6c8683a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page