Skip to main content

Tensorflow on Mesos

Project description

Join the chat at https://gitter.im/douban/tfmesos https://img.shields.io/travis/douban/tfmesos.svg https://img.shields.io/pypi/v/tfmesos.svg https://img.shields.io/docker/automated/tfmesos/tfmesos.svg

TFMesos is a lightweight framework to help running distributed Tensorflow Machine Learning tasks on Apache Mesos within Docker and Nvidia-Docker .

TFMesos dynamically allocates resources from a Mesos cluster, builds a distributed training cluster for Tensorflow, and makes different training tasks mangeed and isolated in the shared Mesos cluster with the help of Docker.

Prerequisites

  • For Mesos >= 1.0.0:

  1. Mesos Cluster (cf: Mesos Getting Started). All nodes in the cluster should be reachable using their hostnames, and all nodes have identical /etc/passwd and /etc/group.

  2. Setup Mesos Agent to enable Mesos Containerizer and Mesos Nvidia GPU Support (optional). eg: mesos-agent --containerizers=mesos --image_providers=docker --isolation=filesystem/linux,docker/runtime,cgroups/devices,gpu/nvidia

  3. (optional) A Distributed Filesystem (eg: MooseFS)

  4. Ensure latest TFMesos docker image (tfmesos/tfmesos) is pulled across the whole cluster

  • For Mesos < 1.0.0:

  1. Mesos Cluster (cf: Mesos Getting Started). All nodes in the cluster should be reachable using their hostnames, and all nodes have identical /etc/passwd and /etc/group.

  2. Docker (cf: Docker Get Start Tutorial)

  3. Mesos Docker Containerizer Support (cf: Mesos Docker Containerizer)

  4. (optional) Nvidia-docker installation (cf: Nvidia-docker installation) and make sure nvidia-plugin is accessible from remote host (with -l 0.0.0.0:3476)

  5. (optional) A Distributed Filesystem (eg: MooseFS)

  6. Ensure latest TFMesos docker image (tfmesos/tfmesos) is pulled across the whole cluster

If you are using AWS G2 instance, here is a sample script to setup most of there prerequisites.

Running simple Test

After setting up the mesos and pulling the docker image on a single node (or a cluser), you should be able to use the following command to run a simple test.

$ docker run -e MESOS_MASTER=mesos-master:5050 \
    -e DOCKER_IMAGE=tfmesos/tfmesos \
    --net=host \
    -v /path-to-your-tfmesos-code/tfmesos/examples/plus.py:/tmp/plus.py \
    --rm \
    -it \
    tfmesos/tfmesos \
    python /tmp/plus.py mesos-master:5050

Successfully running the test should result in an output of 42 on the console.

Running in replica mode

This mode is called Between-graph replication in official Distributed Tensorflow Howto

Most distributed training models that Google has open sourced (such as mnist_replica and inception) are using this mode. In this mode, two kind of Jobs are defined with the names ‘ps’ and ‘worker’. ‘ps’ tasks act as ‘Parameter Server’ and ‘worker’ tasks run the actual training process.

Here we use our modified ‘mnist_replica’ as example:

  1. Checkout the mnist example codes into a directory in shared filesystem, eg: /nfs/mnist

  2. Assume Mesos master is mesos-master:5050

  3. Now we can launch this script using following commands:

CPU:

$ docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /nfs/mnist:/nfs/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /nfs/mnist \
             tfmesos/tfmesos \
             tfrun -w 1 -s 1  \
             -V /nfs/mnist:/nfs/mnist \
             -- python mnist_replica.py \
             --ps_hosts {ps_hosts} --worker_hosts {worker_hosts} \
             --job_name {job_name} --worker_index {task_index}

GPU (1 GPU per worker):

$ nvidia-docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /nfs/mnist:/nfs/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /nfs/mnist \
             tfmesos/tfmesos \
             tfrun -w 1 -s 1 -Gw 1 -- python mnist_replica.py \
             --ps_hosts {ps_hosts} --worker_hosts {worker_hosts} \
             --job_name {job_name} --worker_index {task_index}

Note:

In this mode, tfrun is used to prepare the cluster and launch the training script on each node, and worker #0 (the chief worker) will be launched in the local container. tfrun will substitute {ps_hosts}, {worker_hosts}, {job_name}, {task_index} with corresponding values of each task.

Running in fine-grained mode

This mode is called In-graph replication in official Distributed Tensorflow Howto

In this mode, we have more control over the cluster spec. All nodes in the cluster is remote and just running a Grpc server. Each worker is driven by a local thread to run the training task.

Here we use our modified mnist as example:

  1. Checkout the mnist example codes into a directory, eg: /tmp/mnist

  2. Assume Mesos master is mesos-master:5050

  3. Now we can launch this script using following commands:

CPU:

$ docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /tmp/mnist:/tmp/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /tmp/mnist \
             tfmesos/tfmesos \
             python mnist.py

GPU (1 GPU per worker):

$ nvidia-docker run --rm -it -e MESOS_MASTER=mesos-master:5050 \
             --net=host \
             -v /tmp/mnist:/tmp/mnist \
             -v /etc/passwd:/etc/passwd:ro \
             -v /etc/group:/etc/group:ro \
             -u `id -u` \
             -w /tmp/mnist \
             tfmesos/tfmesos \
             python mnist.py --worker-gpus 1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfmesos-0.0.6.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

tfmesos-0.0.6-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file tfmesos-0.0.6.tar.gz.

File metadata

  • Download URL: tfmesos-0.0.6.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tfmesos-0.0.6.tar.gz
Algorithm Hash digest
SHA256 a325bb67606c96bd41533c8060a86e7366b075597d3d32a606fa4ef45f1fc92c
MD5 7372ea6c5ccdcbd1157ddddc82df607d
BLAKE2b-256 e02c9f0906c2bb7dbf1a13f936841ab9e39d457596d2638939711dac4cb7bbd4

See more details on using hashes here.

File details

Details for the file tfmesos-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for tfmesos-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 84b2f7bb12e26cc46527ddde06ea863a295ee3e6e90795ed3237e9f2de3fbccb
MD5 b50d9d3725c2e65908378de7abc66eba
BLAKE2b-256 c4908c69ef7dbe7de7402b3a3de99733f581f2e8002e86539836546fa78fa848

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page