Skip to main content

Missing layers, ops & etc. for TensorFlow

Project description

tfmiss

The missing OPs, layer & etc. for TensorFlow

Development

Environment

Install all dependencies including python headers. Do not use pyenv on MacOS X, otherwise tests mostly likely will fail.

Build PIP package manually

You can build the pip package with Bazel v0.25.3:

# GPU support
export TF_NEED_CUDA="1"

# Set these if the below defaults are different on your system
export TF_CUDA_VERSION="11.2"
export TF_CUDNN_VERSION="8"
export CUDA_TOOLKIT_PATH="/usr/local/cuda"
export CUDNN_INSTALL_PATH="/usr/lib/x86_64-linux-gnu"

./configure.py
bazel clean --expunge
bazel test --test_output=errors //tfmiss/...
bazel build build_pip_pkg
bazel-bin/build_pip_pkg wheels

Build release with Linux docker container

# Requires about 4Gb of RAM allocated to Docker
DOCKER_BUILDKIT=1 docker build -t miss --output type=local,dest=wheels --build-arg PY_VERSION=3.8 ./

Install and test PIP package

Once the pip package has been built, you can install it with:

pip install wheels/*.whl

Now you can test out the pip package:

cd /
python -c "import tensorflow as tf;import tfmiss as tfm;print(tfm.text.zero_digits('123').numpy())"

You should see the op zeroed out all nonzero digits in string "123":

000

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfmiss-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tfmiss-0.17.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file tfmiss-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfmiss-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13a85275021db148097ba892b098567ab2d369a45b9bbdb66fb14af909378866
MD5 7c59ecf35c88f3a0332e918b0d5b7f73
BLAKE2b-256 92b26aa731f5166f732bf3f1f59db8e480d70086f7380e9f0afeb905a145c17a

See more details on using hashes here.

File details

Details for the file tfmiss-0.17.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfmiss-0.17.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8df9d0c0df2afd2dbde30b584a3cc8b41bb2074610db88c7080dc2f7fd31f8c1
MD5 fa698b2adb41cac45c32f36bffe4c9f1
BLAKE2b-256 f7b98d911b2f3310187661320a98c81a642be184f386b66e1fd313d9ce465169

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page