Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20211111051501-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211111051501-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211111051501-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211111051501-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211111051501-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211111051501-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211111051501-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211111051501-cp36-cp36m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d970ec36b7bd138294c7fe44edadab5eef73cb57a8550c8f4676daaa6b734e58
MD5 bb7ace12f69d59551caaf501e10b933f
BLAKE2b-256 01b3f213b96e6e87b5c1e2657324ed680bc2b3e6f66e2f327f63ac11a4823c66

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 75366957e7429f2ba0f563b0c5bd3b67576c7da7bc174749976be1b0ec4714b8
MD5 5d1dc4e201c526a65b2773635d050c50
BLAKE2b-256 9e7ec7903e1071a608ce2561c458cb6d05a8b350f30f2e60f053919f3bf8dcc0

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 89bbbdee9c4fb4f20b53fb9833d8a4aea1cf2223b1e4c878421f27b992fb29d2
MD5 292e7e7d9f68cdc7b294f87f987cdf5d
BLAKE2b-256 ddbcf4646fd9d5fa8d5bae6b61d1eee8c0c8ef2c8819cb48831904441f77c0d5

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bbf497bfea6e46e266afbed17d5944a7f0949177ae13d2a211659c435d0360f9
MD5 6bdfdd36c8ddb3093fcc26257a4a8282
BLAKE2b-256 1e9a86e9f5b727495f951b292b438ababc3639d72574f3c232c369d1fad4cf3f

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff429a07ed2579f854cfeddef6e6ff6085ba986b30d9d8d802e6d35ef86bbb21
MD5 5363db2cf4cc8f21fd0c7cc52495946e
BLAKE2b-256 bbcb80b5aeefa2982bd4c16d31ede1d75e2e38d6897e3b68731c4b1a1d7895df

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4575e8bfff3551500b3f3ba2c2d19c995ceba428eeec83a6cf29ea2290ed23f7
MD5 e0d0b6d8f2ec51721243b1dd9b734d62
BLAKE2b-256 cee5c872c25a9b8091963cc8243059c817a2888088fa71a507463ef588e8b770

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6dca76647a4c13cc24a9f3bebe5a4f947ce12f2a3a181555a8e982001e368ff0
MD5 b8e756c5c4da6cf8474757f93e5d4339
BLAKE2b-256 9a86c895054781e6db9389a2b27a1cd523aa574bebf59a91446b22226a4d5756

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211111051501-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211111051501-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b7f913d9c87baf73b3e9c43d3eb5f966c5d068002c940d8d587e312aead72021
MD5 949dbb095c28a75069f961c82cd97fba
BLAKE2b-256 b46ec4f26c2af857891cf92bbc3bfa12195fed1d83f1ab12056e23cd21f24d0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page