Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20211123035723-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211123035723-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211123035723-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211123035723-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211123035723-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211123035723-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211123035723-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20211123035723-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211123035723-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3b89cf1f94f5d4c7cd72b3fa677399813ab33eedc06058f87e25e60d148d7acc
MD5 da689e54e7ad66c848d4b53fa8565b94
BLAKE2b-256 006d535ab669f67855d5d1bea591018f8b555d5eacf2aaaef2204c83f459dde9

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211123035723-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211123035723-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 17e3242032c9de36c20442adb58cfd5edd7b3bcf59691088a6b33862d1ae7db5
MD5 54c57cae3a7b54967cfc9fad356e26b1
BLAKE2b-256 ec6c4e08e27297b16935da5eba2bd7402b53f310e5bd5b344d3a996242c9aa74

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211123035723-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211123035723-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 412447ca80eec25791dca386f8a27307d9774113e96c3cd49bc4c098e8d81edc
MD5 b8fba68b8f3ac9839aef56bf7d162585
BLAKE2b-256 5722243420220f7d0af64723538c534b8a13347797ab41f454f08f840d0e1f5e

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211123035723-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211123035723-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0eb44f97b0563ddd1425770afacac333860ec503e3801f2c48866738c1fd6a8a
MD5 1637bf843c8499c89b7635bd21711fbe
BLAKE2b-256 57dd8d79c1407bb9167d46003cd39ae958d8cb04326763be5196f7c363ead609

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211123035723-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211123035723-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 585dc8fb36d6c11cfbecef77d888c22c0839cf8626cb2d1a669f14e3941e0003
MD5 a695cabf24c14936b9cfd94c11c8c024
BLAKE2b-256 d5df111543e2ddd525240933bc22aec84428c52b669b4b42ee30b25850b44865

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211123035723-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211123035723-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6ae6f1e57551a800f3a8f4dbed76663120b97f1d224aa07548406d1568059112
MD5 ae71ca1891f20b150f82c02cfd29b900
BLAKE2b-256 64d2286270159b12fe099080dab3f044aac7c620ba68aebaf50d89ea8611a749

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211123035723-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211123035723-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 835c04c1ed8c75efa21a60f1894ae8cfc2ea315c6518a037b6698cce404b1ecc
MD5 794d1e4a77d6096c25cdcb11010686d7
BLAKE2b-256 58d0154cc4479daa72e54fe8e0de4e4052f21657b207d543ef4fb93ead571b24

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page