Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20211207032612-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211207032612-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211207032612-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211207032612-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211207032612-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211207032612-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211207032612-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20211207032612-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211207032612-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7bdc7cb47856932f3364a6e0419e33bbcece033556c91dc5a8861ea989f59811
MD5 8efffd53250abb5c07d5636c43a8bb4c
BLAKE2b-256 63a39b944c1a8399c1ac82945a57fe4f9d8770c1d1923c631ed106f6b036b44d

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211207032612-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211207032612-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e9e25f0a5ac5f222e7fdddc437dc10ce42c7db51885dc3e897b31637d8da19f1
MD5 90da7114053138f63f7b643fedca2591
BLAKE2b-256 de3280dbe72e2c99d7d7ccc80da47d8ab28188097e42d66a868abb6b0af125b9

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211207032612-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211207032612-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4f5abe93866a58d374bbd45c28f453674c3a9f51e6d0bd87daab7bb939c8cb2a
MD5 d4bcd3b77232b63253a6497538cd6578
BLAKE2b-256 af765534a34e01602819aee7ca0e59065fc54cf5a3d1d0458d7dcee52a3ba571

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211207032612-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211207032612-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f89622352759fc1a89df0862099dfdf6634aefd589f5b97d6dbfeee51cfb27f8
MD5 a2d221758b26b3abd264372223231daa
BLAKE2b-256 832aa0f7fc1e628e317e399c08a2741141d51c7703550d4af4645176fda3f3ee

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211207032612-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211207032612-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bc56b69832bca128f2a77b58ebd040d495518866bd91a66c76b038e91b977f29
MD5 67f2890096ea936f25322975b506c23b
BLAKE2b-256 8729a50b32cb12e0c1cb3c11b3ab33d54661cbf602a5b602b275bf51a6d86884

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211207032612-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211207032612-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3d58fbfc503d6ba13c09de77e2f401464c2bf7534ab0fd07e6264ce8a907abeb
MD5 f25063ff6ebe279f60880861564be5fa
BLAKE2b-256 3d6c6698089f600dd28f06b3061272d20f95333ac7a0d5e54cd2ab5cd5572ced

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211207032612-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211207032612-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eaf5699e5fb5dd80318ae8248bf0bd4e451a0bad7e2fdb21896eb854341de3d2
MD5 e085a247eb86f9803595f860c77c5d1f
BLAKE2b-256 61fcfd15d94a1aaaaf9f2869e936b174fff7f54b321c9469d65ace472d757cc7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page