Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20211209140103-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211209140103-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211209140103-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211209140103-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211209140103-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211209140103-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211209140103-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20211209140103-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211209140103-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d4c9a22a69216383e21c074881210f2cdbc7cff72fdb07f13bf7137f28f58adb
MD5 8692b6e89c83e4aaf74f56c9e4636198
BLAKE2b-256 e2160993225c886478a88808b6fcf0dea7ec7b19789f14fd7389c2489f886940

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211209140103-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211209140103-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c472df518386ef0a30fd12165adc18d91066f982544f00fd5ef98ce7869030e9
MD5 17d650ec53b1177986359bc52e3f0b7a
BLAKE2b-256 f7dfb5baf7f7f9e27d73fa41d580228d67bc7ff9981f5ad9a737c107991269f3

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211209140103-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211209140103-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 41b8c7a90bd8c53f052ffc2072679d878f4a389fb7a23ce4d5968f89fce17b9d
MD5 f518870ac566c4ba4a754758b3ddf3bb
BLAKE2b-256 2148eedbdb48e7e6c9d3f521370fd494f5dd12fc7ebdc77ff5c3d018a1898fa6

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211209140103-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211209140103-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7375f21e168d25647076bd44e659f03cf1fb0bcfe8c8417045e7cc2569121517
MD5 31af89f92b5dbf49b19dabae3734a0d6
BLAKE2b-256 69874311499c4c55d0f3cd46c83b971d83f201e0743c343c2e9a551f3863f986

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211209140103-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211209140103-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9fa9ec04807a8fa2d98f1637913ab485262c7a9d137b664ec90be36521a1123e
MD5 1c02301ac5ff903ea8c5f960dce8e577
BLAKE2b-256 3204df56f4b8f4c38c88e5c1599d609c7b117252493bdbce9cde3cc84fa2fe96

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211209140103-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211209140103-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 01ffd2e7c199acc184bf461e349e44f510dd3c08c7071d1a74dd434698113d26
MD5 b75feff9e7cbc090a99a14d207f0b8e3
BLAKE2b-256 1a7d71956dde4ef92e06cd405574ee6af4e9a84e08d7cb7a95b51257430163f4

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211209140103-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211209140103-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0f2fd31e51ad241a6181eea7a1020616e6d60df4b021778b56829f8377353c78
MD5 ca6fe47f06ae7f465d9831fecdf2019a
BLAKE2b-256 095cdb113c0f1dfe30bdea756aa05a5b75bcf249238b1b91fb2e64872c346cc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page