Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20211229011945-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211229011945-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211229011945-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211229011945-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211229011945-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211229011945-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211229011945-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20211229011945-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229011945-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cbde2869fb669e2ebf45a11fe638d30228dae71ea53410353e65bed328c5f51f
MD5 5e7ac29e9f460b64f4ca006169519f28
BLAKE2b-256 025dc075517ffc2fef47e60bed2279a8a66a8b941b04274cd5578f5d0eb633dc

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229011945-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229011945-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c73da246180b9216d19c3b1b9ec0fcd6ef851b65fdaa5cbf9ea33452c29f853d
MD5 f6c77ab024f09cde8b924169998a6b82
BLAKE2b-256 892ea0e60fe5f519401d663fa4d926cfda833708e9ec4df25acc9ada4424aca8

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229011945-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229011945-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8188dfb8467c2c29ff4ce3c164039d20223f054896f0796c1fa60d5578445542
MD5 ff100503fab668dcba885bffac32033d
BLAKE2b-256 0790a1ba606484287cbe881f4da5a722f1ff4d2b390ee28719c31740b085d5df

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229011945-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229011945-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b81925a7565f789b2acd45d0b19036a1229c37dffe20cd9f963597b05c94475a
MD5 68eebd9898dca9a224c77a09f004e9c9
BLAKE2b-256 5b4fb2239848602d9256f915cea0c021c1a4bea87acc2e42fde3eb2e9237c2dd

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229011945-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229011945-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b70b2d36784aeb1de3a4504351688cec2a479d037e7225d0aa39e32b41b6f57
MD5 c794c4b2fda589eeaca72a6d43e17f1e
BLAKE2b-256 e1d0d365b2d7117b7d2f51860c25c17891fc6951da148c1bc8b7e053152043c7

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229011945-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229011945-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e11ccdb61abb4b1004075d1c6accd865b9f1b874646a1ef5c7ee50831ff8286a
MD5 9be5df5ccee0d3d486a2057ba3f5c475
BLAKE2b-256 28f6346d1ba408c418c0213a5792e90039190c5fc536979216118b95f33d10ab

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229011945-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229011945-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b1e58a52247cc99224b8b90c156933c1833f0a3462ef64e006ad4f0fd4269902
MD5 38df62a31d18ef593e4004fd5b423ed4
BLAKE2b-256 173c266056984321fafcb94a1a03ca9bd16e1e179599e7631deb71d35c255162

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page