Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20211229065509-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211229065509-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211229065509-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211229065509-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211229065509-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20211229065509-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20211229065509-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20211229065509-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229065509-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ad0405c708182d23009a18117894699dfc44839cb59119e33054d93c9d1c4580
MD5 e013561544ba691b9dec35b5a22af1e6
BLAKE2b-256 93585a66f8ee184b9c48ff751319b0d76ae57b75fcff30b0fa569c2ed312defa

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229065509-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229065509-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cf4e00b0b813d9412d5a0f7f8bb50a99ef354a7f18bde1145e0d78406a804a12
MD5 6d12e21122eff49bd78d389b015fff4f
BLAKE2b-256 a36f8d0edc75f821db35a153cda3791f9f4ae3aa313190540a6de49d9f72b5c3

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229065509-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229065509-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4c2122bb87df47d3d478d9b034e607ceb7cb51c4801c26232a40a7a149343b3e
MD5 596da51bf5224d9e1390bf2343c90b60
BLAKE2b-256 213041b9fd35199ddd9077e3c1245921cc5570998f27d9e4b8d079d0c7346fda

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229065509-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229065509-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 289074bc06ba0adf94f98aa217219226ee327a4fe95b2d7899b1ae8c37f14ee9
MD5 47a4084cde4f9e03f495b54e62837389
BLAKE2b-256 74401a377f702f80fc0af5072064973322479b3fb967c11f507c243fc10c03f5

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229065509-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229065509-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 43ddc72564b34da4ebea472aff4d28b4ba9a0cbad67e4ffa5513dc4dd149516a
MD5 b0c45a8c778858868589e4df20eefdec
BLAKE2b-256 03de4450f234f6eddb7a1bafe4da05eb21a1463a58d8e21cacb4aba0ad3effe0

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229065509-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229065509-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7c01506e3fd2eb99a35f1b043fb98a7f0f4c5293a7fb1e3210e3227d42485925
MD5 6f708ba8eec70221447e44c1439a9473
BLAKE2b-256 eb00506189c10c79b6ee622b2e3d4e19bf4dd15c31844dcdd30f0cccfd6605db

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20211229065509-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20211229065509-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 85570243d7f35ec513aff62f56753fd14d84a3c152b18c1b85b8ae0e633fe224
MD5 3006540cc998637b879aeef6d1f8b86d
BLAKE2b-256 89d4ceb269fbb59ce76724c905850dbc9170b0f51608ee457048b914c9992f2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page