Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20220211114332-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220211114332-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220211114332-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220211114332-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220211114332-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220211114332-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20220211114332-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220211114332-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 955882360c3d6f4818cffc4acef26662a599bd0ab341cbd11ea244044de4036f
MD5 49759d64dbc54e569e57ffe955eb51e4
BLAKE2b-256 650ee8fb17c7f5779d353578aa2448307bf29ee7b1a4e94b8e87516df0ad579d

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220211114332-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220211114332-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220211114332-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1a359f94d5563ca67371acb931f88bd30ec274612b9cf1671dfc3574217b70d8
MD5 adb59ef80b4369ff1734fcbd53cf5b94
BLAKE2b-256 519b61f4d38fbb7009a1c9997495f9178cab38873eb53dee8d069df7ccccd353

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220211114332-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220211114332-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 66a44eca53c2ddcb24ebd5a06bd8545c2341c235220e41a24360b675b4669019
MD5 c4e3023de0e55c407564020ef0737357
BLAKE2b-256 97013cfded7ccc04c740c58a0d0b5840571c184e032bdaff2ad9b2442833c63c

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220211114332-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220211114332-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220211114332-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 de62d0e3dad33bfe74378694596a3b8fd608616d42c7a9367b2015fbbbc73adb
MD5 bc1ec69db4d213712ee6f17bc2954d71
BLAKE2b-256 131e8248de1436a68b5f65602498364f2e372418c9fa9c01ada138d165ba9bdc

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220211114332-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220211114332-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 938df1183a8dc7b64265ed999be1fd387b64d3cf7ff157f22048bf79ebdc503f
MD5 85d7856036e147093d5e46f01b6287f7
BLAKE2b-256 0e7ecd62aecd67238c228560bf8965784bc89579779703734c4a2892b97a4f5b

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220211114332-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220211114332-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220211114332-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 50da8e6836b0a33260786612b45db645045092a3adb4c5dde3505a9555c2a2ae
MD5 26605d74e754dce89691ce9324bdd60c
BLAKE2b-256 37bacbfb30f1887e59d821e36dab7858474c94adfbd68a65aee0f326cb516fe5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page