Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20220214141030-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220214141030-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220214141030-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220214141030-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220214141030-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220214141030-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20220214141030-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220214141030-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8fd3f8112b0984d4a91f1632c78d39562881671f604530a849c458fff7c617b
MD5 4ccae981612bb3a9c7e07aaaf68feb9f
BLAKE2b-256 7ed7051c421ee8256bf173ea559423f9fe1ff2a9ff7da6aeb532ae972e191182

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220214141030-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220214141030-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220214141030-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 675cb986deca64a29e94e064aacba139eaaf78f6b85fa6ad1e00e737745d12aa
MD5 ea9f28257c6327ad96044bc440fdebb9
BLAKE2b-256 4b024a25ab6b72c13d973527659cd05279284ca269e6fe018aa563c18940c5bf

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220214141030-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220214141030-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5b6638f30f0362657e838516616a98c1b9a87ee6992a6e94bb31c882e241ca92
MD5 960b6f08a688489cc004c691294f2727
BLAKE2b-256 363e2fed51eb495deb77c339a4aedf87afecab387b0e186a923c6baaba1922eb

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220214141030-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220214141030-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220214141030-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 92a9c0e4b98288c6482b7bbccd567b6e565150af50ca2a0c11c7ddbc63228e85
MD5 a24fbe4043b24f9dd22a3db15d5b3b0d
BLAKE2b-256 46479f65b782bb418ea752843a77d6d2cd73a68855ffacfd984ad4f312c75a89

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220214141030-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220214141030-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2287bf29e222623793800599acd9f3b60a3037003815fe030d453ca28d8adb3c
MD5 f5c42e11e5a57e21f3f6c7b172aee441
BLAKE2b-256 75515ca7fb34376ae1caa90676dcd7c240feba7647ce71022a8b3082a8b48e92

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220214141030-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220214141030-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220214141030-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9ffa1866a01afcde453969c76a337feb22c9a46eda32171d9452ba2aa4c9f283
MD5 6702fa83eda244d6bdda412f7a47e037
BLAKE2b-256 9cb86c826344ffead103cec0bb1397ef1451d8a1a6b50ace70e91fab6090db1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page