Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20220228101201-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220228101201-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220228101201-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220228101201-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220228101201-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220228101201-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20220228101201-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220228101201-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 916ca533c8fc50466b55401319e6b28693b3791261b3065c9a218ec96d02ff3a
MD5 ea0a7ebc3a590c632e7f62ef07172f69
BLAKE2b-256 813f6217f727b28b32d8e0f4ba7896533de94d50208787a6f995aa448590cdc2

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220228101201-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220228101201-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220228101201-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0a0eaedee4e232929e2cd2fa988055393a9fd5f02f861e72abc5a0cc43a0fc62
MD5 d5d72a95a622aff5238d2b0e7410aa40
BLAKE2b-256 7b699de0ba6f32b1176db9157fa2cecd6b2acb877a65dac597a4afebed6e2df5

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220228101201-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220228101201-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0306d5773558d63cb9057d46b0d5e2cfe515f9d4ee8dc1cd5c3e31811b41b32f
MD5 708a187925206ea0d204534716e54d1f
BLAKE2b-256 6e933a0369b37d8fec747138ed82bd0fbc1e6c1e3b32cc1ebc5847be61f8ffd9

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220228101201-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220228101201-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220228101201-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 37877039b30b5a3d9635551abf8ad8eae622b5e367e14b1c0fe1dffb3645b732
MD5 124809caceef2e0719218df7d2d4fad8
BLAKE2b-256 125be2a462e093ea79b767a49c0b0f81976739cca77aae1a6dba90dd12520dbd

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220228101201-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220228101201-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a2e4bfa59a99db0159735bbfad2a4eda0c4b123c5e8e34ed97ff85feac32c8cb
MD5 87289eff810dcae0803a09572eae4aa6
BLAKE2b-256 5bb29abd5fad56e165da7bf08d277e61dd278213e5c81862952736470d860d9d

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220228101201-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220228101201-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220228101201-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4044a21270e8665fe40dbcedf55d330643c4a26f8a1011e33354f0b4a9e71985
MD5 37655fc9f404b7567e39dc089bda5969
BLAKE2b-256 5ba032607ad7314755ca072f0f3d04e9de74f79799648b7b9727c82ffe89819a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page