Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20220301063851-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220301063851-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220301063851-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220301063851-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220301063851-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220301063851-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20220301063851-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220301063851-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5614154c9c0782433e20409565ec9b9bfdd7a9b832a6a2a1f328681f6f6a9cd8
MD5 172b118558afb028cb2994870e7204fd
BLAKE2b-256 c00562d01421dbc0ea4f6f3c8b58e7687423e8cd78eb52fbd07acbcb04c646bd

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220301063851-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220301063851-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220301063851-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 63d69989ca021fecc7f35a35462f28d962f845810600fe44963cff0e9b677014
MD5 64c8effec1cff4033f35cc06f207b226
BLAKE2b-256 f8a4e5572bec409cc88a4434a46ce39ab1f1b274c5c423d6c28fde4e3c9f439f

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220301063851-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220301063851-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b4bf3b326e167529211b3153bf5d91223f993eda1774066b96dc8371d8ae5b3
MD5 5667e1149c22c8f03d9b606cf3bd6d79
BLAKE2b-256 0caf29e40d73c79b16ac9db6cc2e96d8e254b702a509a6f51f1ec2869415b2a4

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220301063851-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220301063851-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220301063851-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 72ab6c493aa0136f0daf81be08fe903a28db1383df32eaae3d679fc910a75193
MD5 775179a5d5111f8772b97df544c88598
BLAKE2b-256 e1bd1ada05fdeb3e1f6989cffcaffe1bec5183fbb51f23dea62e2ffe35e7bfd2

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220301063851-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220301063851-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e92d1fe560ebd3f793d13b220903f633ec10379d7d8e5e7c07dac820014d763e
MD5 962ffebab49bb561fdb418bc0b6f5c17
BLAKE2b-256 82aa9465b45c61fd69c95c48f833a593fffe7b7a069fba7a412ced8d12d54c0b

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220301063851-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220301063851-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220301063851-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a6c743abbea42b788406c235ef0d14b4ead984b6442e2e9eff6c0e3554a09da3
MD5 fc183c630df64021a18b0375ebe0def8
BLAKE2b-256 82c8a64326071f480403f0248505fc4edc60992b0c983b6b8d0c23a8e1cf59f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page