Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20220307055552-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220307055552-cp39-cp39-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220307055552-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220307055552-cp38-cp38-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220307055552-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220307055552-cp37-cp37m-macosx_10_13_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20220307055552-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220307055552-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bf76287db7652c8c3a31a58d0b692290584d0329b8c6247a6d59097583762efd
MD5 a483dbcdbc535ecd9cec24a71b1acef2
BLAKE2b-256 8f1acf929fe041fd268928f10a0e4dbbf2db5c0c19d252793424c2e26d2cab23

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220307055552-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220307055552-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220307055552-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7ba767c157a4fc60b8cf5e1dbd629e745f448d048d765f5a47d17ae22d9f86e3
MD5 63fde3120d869a5f056697fc29d9bd83
BLAKE2b-256 88d5944c5b29db29f81d825a9972a4562959e6f9b489c4dc8da2f17fda069baa

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220307055552-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220307055552-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 05d159befc5f00ab13fd8ac1d41b93774ac3428672068fd4a655d90de9651348
MD5 204efd97f148165f1d5f6fe372932344
BLAKE2b-256 f6be0b6d5e88ffce3d15a78e2747009cd6c9187d93ac3fbecd5e2abf19c12b79

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220307055552-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220307055552-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220307055552-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c22c472fe4423f627479400d4070fcd8d46fced4842ad2af766f5c105b279ebf
MD5 0b7ab988e5d98eebf8bc45ca2c89c240
BLAKE2b-256 9526c3f3cbe76d87154424b59c5f159bc2f6636ffe4b6a87de347db13aee89bb

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220307055552-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220307055552-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 17eadacbb20919e0cb01b3c37749fafd9ba691875e725b10ef60f1941634e8d5
MD5 9aa0e0cbdc02141dad4e301288f39b9d
BLAKE2b-256 7ab221885d565f24028ce7c29090f3bf7bbb7fa75be4e258035a294249dd72f4

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220307055552-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220307055552-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfra_nightly-0.3.0.dev20220307055552-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 76e7d565e46a122e95853c23da75e4404f637dc87e50e760101b15200bd77b4b
MD5 4089332cd1c897ce8f2fbf957c6d518b
BLAKE2b-256 94a80b0a5b8d61beda6db2326384529484bc67378c1fe845897b3082e86711a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page