Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.3.0.dev20220329023504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220329023504-cp39-cp39-macosx_10_13_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220329023504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220329023504-cp38-cp38-macosx_10_13_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfra_nightly-0.3.0.dev20220329023504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfra_nightly-0.3.0.dev20220329023504-cp37-cp37m-macosx_10_13_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.3.0.dev20220329023504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220329023504-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff82edd35f4fb2f95740a38a299553da370ddcf9e97747533ce6a8f0d4b4dd67
MD5 b1db1b3059279f0fa7664d06232d0dc7
BLAKE2b-256 249c9c0235c7d206fd86f8618f6d095de19e3d73700eb3e64753811ddf455acd

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220329023504-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220329023504-cp39-cp39-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.9, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfra_nightly-0.3.0.dev20220329023504-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 df03d0e9e9c92fa4bd1c41e87c3b2bfcc3253ceef1e1f113a0a436d1541ef9d8
MD5 61e06448e231e94d1e19dcb16fc1da83
BLAKE2b-256 efb0f87f8b94cd6f0dec9b00111d9a3e7daa21ffea8b10ad9298107a8b1e4636

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220329023504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220329023504-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5af1e04f42add705ddde9b1d6ef8efaa6e23f72d4835c46cf02e428e7d616e00
MD5 bfc7f5ab11b65e70264b99fda894b239
BLAKE2b-256 048be4ca8875948a5af18566547ce28be0df863873a679ce0884d564b0d82049

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220329023504-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220329023504-cp38-cp38-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfra_nightly-0.3.0.dev20220329023504-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2d24bff0e698209d3daaa4e6dec1205c48dc7c73288763da851b138b577961f2
MD5 6443001eb952e4c681777af267b834f8
BLAKE2b-256 4edcaa49284534f17a6bc8253cb96b01988c3b57bd2743321a0a62d83202d259

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220329023504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.3.0.dev20220329023504-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2080cdca28cfa70cc2bb4e137a22ac062f925aa4f30d32afc3a42b2950473665
MD5 e4b54d9f27762970454b06ad9846df7e
BLAKE2b-256 616204d1990fcda26498c98f582445683a4f09ba432d69b6d91956507f9410c2

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.3.0.dev20220329023504-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: tfra_nightly-0.3.0.dev20220329023504-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfra_nightly-0.3.0.dev20220329023504-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d00b5ba7a2941538a1205d6c7860cac1bd48fe308b640bdce3aad154f4bd5fdf
MD5 af318eec5f1f708b844ae74791ea95a2
BLAKE2b-256 88c3c83a393f0e19b4755ae2ab9fb9e5bd1d7301109f21922dbea2e91a93b3a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page