Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b612280a74b30f6bfff9499d0bcc1eb1ab89946889b7c89e85e53eeeff98f97f
MD5 1f6fba162d9f91b573f7b6dd5bc736eb
BLAKE2b-256 0f80e9b709c314cc9624e2222bfb9e178a8a17da49ac9e33b8d5183b488c2c15

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8970ec440600e4ff8347c6147f831513b6ecd034d775f85a146bd9dc121be494
MD5 35bf7fe79e915c55e4dedf10b793292b
BLAKE2b-256 133b825092cabce0141cc519ce9d3ce5e3588865b5bf4681072b2d5337c76f93

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b7af6976d2664dad8a81a70a65f7a9f116dc541418d29a179175b329418e171d
MD5 af876aef9621dffce549c9d6b92880e7
BLAKE2b-256 bbc0723beaee5cf2411ff537d6acabd60eda8c68f67525da7364da52be1d8f28

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c28c3cb6560470b2302e05d3796939b485e4f1ad28058eebe4c521060d824509
MD5 acc2aa780f482b508c9d9d521243ec3b
BLAKE2b-256 2b4e47624faf21741c2b4acef4c3889cd6a62a23f319dc4aca218a742cf37058

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4d7d50fa85951100c6ffb579292d3b672d69239fb42a0b483a67811349ca9c2e
MD5 5bbdf15b8fec21e2183a492e0e66b05d
BLAKE2b-256 c39bdf4366ee926fbe0666decb217c0e372da2ba25616bb476a634316a16daed

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b19f0d1f03a969d4c66655001c5a768af75aaaa73cff0f3cb67fe7e3ef969deb
MD5 fcbfa547074a456bd84858b0344b18ea
BLAKE2b-256 b9768503fa1a4ce5ed439c12fd9bbd6920e4563fafb4672ce77534359d188bdd

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5424e8e1ece12e0f127c43043cb049bc8844c7cb696dfe90d813ee37c92ab041
MD5 42d704f8947e4144c4671af0c9193dab
BLAKE2b-256 54f86cb240509bc60f63427140609238499ce0bd098e88148b125fa5ccc1a6f1

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e828872e7c499921b763292b8feb6253b5035e3e723ea13919be4c1da9edbc3f
MD5 301a302bb8ba2b8a70637a00e83d011c
BLAKE2b-256 3a9173becae6ed73a9fb1a6fed3e9be4923d46a897088795eb599e6a61dbc945

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240530015752-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 459902b680c91cf9030abdb0b025b99bf47f0ec0c856e95068fd0cc56bd26297
MD5 340fcf50cb4cf3351722bf320e661972
BLAKE2b-256 55ee46474bd2a420ef6bccb16ac0a4fdd7f8905e595ce479051a3ded73f25dcc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page