Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8bcef22917c5900f3b16675806c1722db3c9a1908b5e1516968a66e2fb453f20
MD5 817910f34a4b5f278caeae8ba9284b6c
BLAKE2b-256 59b5dcf986b02dff1d6dca550b0e2dc55f59e834caf3498a1d49cf9b52724b57

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 5dc410ad3293754c3c6c43b54e1bf8fc5b4d90cb2c8169d9a3342ac1917ce008
MD5 2b4dc73cdb7dfbf5b8ec6b0a288cdc14
BLAKE2b-256 4d73d8b7f5fbd92acab74fdf3f967c7fda1d0744c14191255b3db2f39d7199b0

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 10d825668d377060717d37c9dd84820d975670b410c75fc87e5b09c70c31b826
MD5 0b3f5e5b0a97ca59f4dbd6141bb5a140
BLAKE2b-256 5195a8aefb40ebaddfa9d7c8195015f2719c13ecfca063b50087aaac065a1b4a

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35c32f8f9a448e4d7ef14d5ecc193657729c46210465b4ab7546992570572c44
MD5 88f5b3c8c7234d7edf2c3f226da56851
BLAKE2b-256 08063d0bdcf64a36338a7170f3418a2c8b194d692fa395875995b989a00be104

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 61f6280a572282dce18944e54e2be48874031cc2d211774bd677c43c6df9eb28
MD5 ec370604933c58b129bd4d8fbcb8eea1
BLAKE2b-256 d35a49b24e000c0b7985f509f6f88582d39a8566ce21e726be6bc9716a963d4a

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3c040890cc7d90825dafa6560e9a45e56d090232c981fef8ad199d4a0368517e
MD5 b9a4b6c5f3da55348409c067be05ad7b
BLAKE2b-256 a7702ef3bbda773549898a87437084564405f5ecf6595dce2406736263d87594

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aadb5cce1a939a1f91ce5572a805122dae976c276f36e97c74e36aced422b5f4
MD5 3e50db75d5869d171a46dd28a017e7ed
BLAKE2b-256 bc1766077b56582df0706da4f6b27b273bd3e8ecff447793d890cf871d6f2e62

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c0d67473b0c16d1f239dab312c1000dc7e35386232e6753f91d8f0cbc62c343e
MD5 ce896e45e82f56b3d35203d1e7318945
BLAKE2b-256 453abdb0707cd2ab5abf9db7a8cd2843aeec475d3e40f940e68466e678cae976

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240602214359-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c8552137a8a4c0bb6cd8abb27a083b61f57fedb27d90192503ff0d99be16f14c
MD5 d8cc4945fa4081734285914572f9d018
BLAKE2b-256 eb5ac1d258efac0d3813e91da9df1c0c8eacde40f6e90124550238e16db7e1b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page