Skip to main content

TensorFlow Recommenders Addons.

Project description

TensorFlow Recommenders Addons are a collection of projects related to large-scale recommendation systems built upon TensorFlow. They are contributed and maintained by the community. Those contributions will be complementary to TensorFlow Core and TensorFlow Recommenders etc.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-macosx_12_0_arm64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25dacd1e645a559142b385f9d86c36de3673f62b092ec2e2bf9dc586ee08215f
MD5 70982e3b3da31ab7ac0c19db8734765f
BLAKE2b-256 773e2f44e2230562f6b3112dc837a3538a63775d9dc7940bd2b0a3c8d957cd5f

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e24e78f2a3c12ab935ed24612358b9e6bd884de22088e7daa30e5cfcae258095
MD5 135c73eede2c2f1dc8f7f7042a3d4f74
BLAKE2b-256 b29530e44b62c1ef2d6c1f7ea41bc54d479629a27e845e30bcf5fa5dc2b7c8ab

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 baec08dd7dfc5d792d718b5d1c67c680ff9551de9521f8aa05ccc037f52e758b
MD5 c2340d01917d6d4c0f0b811f21f59f14
BLAKE2b-256 2d8a56e41c8d032886b95aa823e4ee7ea09f6d5dff967bdbe50b8e732745abc4

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfb43c783d54dba1e8a071b70983d8069a7260aed5ec62b11470d2e1de7cb177
MD5 5cc74f05660817c59618ac75257a880d
BLAKE2b-256 fa608693652bafa45b5c9c446c4f2b9048f5d777924872efa21113bbd7667342

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 eb52566748ee7bb2799d13fc80414da036126691d001dfdc94e42efce478f546
MD5 3570c8ba6e7bb9e53112e16bdf8142ee
BLAKE2b-256 387fb947d330ddaec8e7d4281381f1b13b32e28ea11516223e18443ec5f4136d

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a693c98c85a3af3c5b355194f23fe266fd046a347185c45cb39e2ba4976ed8f1
MD5 7d6fe9e9382fe6500d20d04ee926d63f
BLAKE2b-256 ed941c52817a547b4de69b9e4fe9409dbab9108a39f2c248a438539f2bb80d90

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a415e9a4341ee71c17c4477c664942d357348b6e96f7874ea4d62c84d339ec0c
MD5 4356e54e94379d33b6e0d1934845978f
BLAKE2b-256 73222b3d6190b710c2d3f51a2eac943a3d2ffa9226e485e3c96380f8483769e4

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 48b56fd13d35bb7933e2f5dd60b2474a6011a5dc5705c8ead7634490420833dc
MD5 fc7d359903544df628d0060d7ac92eb4
BLAKE2b-256 3c22fdde769a57535f46181140bd8dfc73e44c61ba9e302a6c25d651f000a85a

See more details on using hashes here.

File details

Details for the file tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfra_nightly-0.7.0.dev20240609044008-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 33c06162f36561316f53f94a32d590343ba425a0b43421ab19b59720f7714747
MD5 b9ea923f54980baa25f409dbe6a54c0b
BLAKE2b-256 7a04067725acf8a5d0812fdb09e1785ebfda478c08448afad7e7c43196b4e9fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page